Skip to main content

Advertisement

Log in

Imaging Modalities in Pediatric Vitreoretinal Disorders

  • Retina (J Fortun, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review updates current applications of novel imaging technologies to pediatric vitreoretinal disorders.

Recent Findings

Ultra-widefield technology has revolutionized retinal imaging in pediatric patients. Color imaging, fluorescein angiography, autofluorescence, and optical coherence tomograpy (OCT) have all been adapted to capture the anterior segment and the posterior pole in children, and serve as valuable tools in diagnosis, management, and documentation of disease processes over time. The role of intraoperative OCT and 3D heads-up visualization technologies continues to evolve with improvement in intraoperative visualization and surgical outcomes.

Summary

New imaging technologies have the ability to improve our understanding and management of pediatric vitreoretinal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. Garcia Gonzalez JM, Snyder L, Blair M, Rohr A, Shapiro M, Greenwald M. Prophylactic peripheral laser and fluorescein angiography after bevacizumab for retinopathy of prematurity. Retina. 2017:1. https://doi.org/10.1097/IAE.0000000000001581.

  2. • Yonekawa Y, Thomas BJ, Thanos A, Todorich B, Drenser KA, Trese MT, et al. The cutting edge of retinopathy of prematurity care: expanding the boundaries of diagnosis and treatment. Retina. 2017; https://doi.org/10.1097/IAE.0000000000001719. This paper sumarizes recent insights on ROP treatment and diagnostic modalities

  3. Kang KB, Wessel MM, Tong J, D'Amico DJ, Chan RV. Ultra-widefield imaging for the management of pediatric retinal diseases. J Pediatr Ophthalmol Strabismus. 2013;50(5):282–8. https://doi.org/10.3928/01913913-20130528-04.

    Article  PubMed  Google Scholar 

  4. Azad RV, Chandra P, Chandra A, Gupta A, Gupta V, Sihota R. Comparative evaluation of RetCam vs. gonioscopy images in congenital glaucoma. Indian J Ophthalmol. 2014;62(2):163–6. https://doi.org/10.4103/0301-4738.116487.

    Article  PubMed  PubMed Central  Google Scholar 

  5. •• Ludwig CA, Greven MA, Moshfeghi DM. Predictors of treatment-warranted retinopathy of prematurity in the SUNDROP cohort: influence of photographic features. Graefes Arch Clin Exp Ophthalmol. 2017; https://doi.org/10.1007/s00417-017-3745-3. This papers explains Stanford’s experience on telemedicine

  6. Fierson WM. American Academy of Pediatrics Section on O, American Academy of O, American Association for Pediatric O, Strabismus, American Association of Certified O. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2013;131(1):189–95. https://doi.org/10.1542/peds.2012-2996.

    Article  PubMed  Google Scholar 

  7. •• Patel SN, Martinez-Castellanos MA, Berrones-Medina D, Swan R, Ryan MC, Jonas KE, et al. Assessment of a tele-education system to enhance retinopathy of prematurity training by international ophthalmologists-in-training in Mexico. Ophthalmology. 2017;124(7):953–61. https://doi.org/10.1016/j.ophtha.2017.02.014. By increasing ROP education, screening projects can be better stablished

    Article  PubMed  Google Scholar 

  8. Jalil M, Ferenczy SR, Shields CL. iPhone 4s and iPhone 5s imaging of the eye. Ocul Oncol Pathol. 2017;3(1):49–55. https://doi.org/10.1159/000448721.

    Article  PubMed  Google Scholar 

  9. Cernichiaro-Espinosa LA, Olguin-Manriquez FJ, Henaine-Berra A, Garcia-Aguirre G, Quiroz-Mercado H, Martinez-Castellanos MA. New insights in diagnosis and treatment for retinopathy of prematurity. Int Ophthalmol. 2016;36(5):751–60. https://doi.org/10.1007/s10792-016-0177-8.

    Article  PubMed  Google Scholar 

  10. Sapieha P, Joyal JS, Rivera JC, Kermorvant-Duchemin E, Sennlaub F, Hardy P, et al. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest. 2010;120(9):3022–32. https://doi.org/10.1172/JCI42142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ng EY, Lanigan B, O’Keefe M. Fundus fluorescein angiography in the screening for and management of retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 2006;43(2):85–90.

    PubMed  Google Scholar 

  12. Patel SN, Ryan C, Klufas MA. Fluorescein angiography for eyes with ROP treated with anti-VEGF. Retin Physician. 2015;12:43–7.

    Google Scholar 

  13. Tahija SG, Hersetyati R, Lam GC, Kusaka S, McMenamin PG. Fluorescein angiographic observations of peripheral retinal vessel growth in infants after intravitreal injection of bevacizumab as sole therapy for zone I and posterior zone II retinopathy of prematurity. Br J Ophthalmol. 2014;98(4):507–12. https://doi.org/10.1136/bjophthalmol-2013-304109.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Blair MP, Shapiro MJ, Hartnett ME. Fluorescein angiography to estimate normal peripheral retinal nonperfusion in children. J AAPOS. 2012;16(3):234–7. https://doi.org/10.1016/j.jaapos.2011.12.157.

    Article  PubMed  PubMed Central  Google Scholar 

  15. John VJ, McClintic JI, Hess DJ, Berrocal AM. Retinopathy of prematurity versus familial exudative vitreoretinopathy: report on clinical and angiographic findings. Ophthalmic Surg Lasers Imaging Retina. 2016;47(1):14–9. https://doi.org/10.3928/23258160-20151214-02.

    Article  PubMed  Google Scholar 

  16. Kartchner JZ, Hartnett ME. Familial exudative vitreoretinopathy presentation as persistent fetal vasculature. Am J Ophthalmol Case Rep. 2017;6:15–7. https://doi.org/10.1016/j.ajoc.2017.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lyu J, Zhang Q, Wang SY, Chen YY, Xu Y, Zhao PQ. Ultra-wide-field scanning laser ophthalmoscopy assists in the clinical detection and evaluation of asymptomatic early-stage familial exudative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(1):39–47. https://doi.org/10.1007/s00417-016-3415-x.

    Article  PubMed  Google Scholar 

  18. Lim Fat CP, Lee SY, Brundler MA, Scott CM, Parulekar MV. Coats disease in a 3-week-old boy. J AAPOS. 2014;18(1):86–8. https://doi.org/10.1016/j.jaapos.2013.08.013.

    Article  PubMed  Google Scholar 

  19. Suzani M, Moore AT. Intraoperative fluorescein angiography-guided treatment in children with early Coats’ disease. Ophthalmology. 2015;122(6):1195–202. https://doi.org/10.1016/j.ophtha.2015.02.002.

    Article  PubMed  Google Scholar 

  20. Daruich A, Matet A, Tran HV, Gaillard MC, Munier FL. Extramacular fibrosis in Coats’ disease. Retina. 2016;36(10):2022–8. https://doi.org/10.1097/IAE.0000000000001013.

    Article  PubMed  Google Scholar 

  21. Daruich AL, Moulin AP, Tran HV, Matet A, Munier FL. Subfoveal nodule in Coats’ disease: toward an updated classification predicting visual prognosis. Retina. 2017;37(8):1591–8. https://doi.org/10.1097/IAE.0000000000001399.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yannuzzi NA, Tzu JH, Hess DJ, Berrocal AM. Retinoschisis in the setting of Coats’ disease. Ophthalmic Surg Lasers Imaging Retina. 2014;45(2):172–4. https://doi.org/10.3928/23258160-20140306-13.

    Article  PubMed  Google Scholar 

  23. Grosso A, Pellegrini M, Cereda MG, Panico C, Staurenghi G, Sigler EJ. Pearls and pitfalls in diagnosis and management of coats disease. Retina. 2015;35(4):614–23. https://doi.org/10.1097/IAE.0000000000000485.

    Article  CAS  PubMed  Google Scholar 

  24. Blair MP, Ulrich JN, Elizabeth Hartnett M, Shapiro MJ. Peripheral retinal nonperfusion in fellow eyes in coats disease. Retina. 2013;33(8):1694–9. https://doi.org/10.1097/IAE.0b013e318285cb86.

    Article  PubMed  Google Scholar 

  25. Soliman SE, Wan MJ, Heon E, Hazrati LN, Gallie B. Retinoblastoma versus advanced Coats’ disease: is enucleation the answer? Ophthalmic Genet. 2017;38(3):291–3. https://doi.org/10.1080/13816810.2016.1199715.

    Article  PubMed  Google Scholar 

  26. Chawla B, Khurana S, Sen S, Sharma S. Clinical misdiagnosis of retinoblastoma in Indian children. Br J Ophthalmol. 2014;98(4):488–93. https://doi.org/10.1136/bjophthalmol-2013-304321.

    Article  PubMed  Google Scholar 

  27. Fernandez MP, Berrocal AM, Goff TC, Ghassibi MP, Harper CA 3rd, Chou E, et al. Histopathologic characterization of the expression of vascular endothelial growth factor in a case of retinopathy of prematurity treated with ranibizumab. Am J Ophthalmol. 2017;176:134–40. https://doi.org/10.1016/j.ajo.2016.12.007.

    Article  CAS  PubMed  Google Scholar 

  28. Ramasubramanian A, Shields C. Leading simulators of retinoblastoma. Retina Today. 2010:53–6.

  29. Shields CL, Kaliki S, Al-Dahmash S, Rojanaporn D, Shukla SY, Reilly B, et al. Retinal vasoproliferative tumors: comparative clinical features of primary vs secondary tumors in 334 cases. JAMA Ophthalmol. 2013;131(3):328–34. https://doi.org/10.1001/2013.jamaophthalmol.524.

    Article  PubMed  Google Scholar 

  30. Pellegrini M, Shields CL, Arepalli S, Shields JA. Posterior tunica vasculosa lentis and “brittle star” of persistent fetal vasculature. J Pediatr Ophthalmol Strabismus. 2014;51:Online:e69–71. https://doi.org/10.3928/01913913-20141111-01.

    PubMed  Google Scholar 

  31. Sisk RA, Berrocal AM, Feuer WJ, Murray TG. Visual and anatomic outcomes with or without surgery in persistent fetal vasculature. Ophthalmology. 2010;117(11):2178–83 e1–2. https://doi.org/10.1016/j.ophtha.2010.03.062.

    Article  PubMed  Google Scholar 

  32. Neudorfer M, Waisbourd M, Buzi S, Wygnanski-Jaffe T, Stolovitch C, Barak A, et al. Color Doppler imaging of eyes with persistent fetal vasculature. Pediatr Radiol. 2012;42(10):1229–34. https://doi.org/10.1007/s00247-012-2432-0.

    Article  PubMed  Google Scholar 

  33. Heimann H, Bornfeld N, Vij O, Coupland SE, Bechrakis NE, Kellner U, et al. Vasoproliferative tumours of the retina. Br J Ophthalmol. 2000;84(10):1162–9. https://doi.org/10.1136/bjo.84.10.1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chow CC, Blair MP, Shapiro MJ. Acquired vasoproliferative retinal tumor: a late sequela of retinopathy of prematurity. Arch Ophthalmol. 2011;129(9):1234–5. https://doi.org/10.1001/archophthalmol.2011.265.

    Article  PubMed  Google Scholar 

  35. Tsui I, Franco-Cardenas V, Hubschman JP, Schwartz SD. Pediatric retinal conditions imaged by ultra wide field fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2013;44(1):59–67. https://doi.org/10.3928/23258160-20121221-14.

    Article  PubMed  Google Scholar 

  36. García-Aguirre GF-GJ, Martínez-Castellanos MA, Salcedo-Villanueva G, Morales-Cantón V. Imagen de retina de campo ultra-amplio. Rev Mex Oftalmol. 2016;

  37. Dorta P, Kychenthal A. Spectral-domain optical coherence tomography of the macula in preterm infants treated with bevacizumab for retinopathy of prematurity. Ophthalmic Surg Lasers Imaging Retina. 2015;46(3):321–6. https://doi.org/10.3928/23258160-20150323-04.

    Article  PubMed  Google Scholar 

  38. Maldonado RS, Toth CA. Optical coherence tomography in retinopathy of prematurity: looking beyond the vessels. Clin Perinatol. 2013;40(2):271–96. https://doi.org/10.1016/j.clp.2013.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Avery RA, Rajjoub RD, Trimboli-Heidler C, Waldman AT. Applications of optical coherence tomography in pediatric clinical neuroscience. Neuropediatrics. 2015;46(2):88–97. https://doi.org/10.1055/s-0035-1549098.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gregori NZ, Berrocal AM, Gregori G, Murray TG, Knighton RW, Flynn HW Jr, et al. Macular spectral-domain optical coherence tomography in patients with X linked retinoschisis. Br J Ophthalmol. 2009;93(3):373–8. https://doi.org/10.1136/bjo.2007.136127.

    Article  CAS  PubMed  Google Scholar 

  41. Cernichiaro-Espinosa LA, Garcia-Huerta MM, Giordano VE, Salinas-Longoria SM, Romero-Vera R, Garcia-Aguirre G, et al. Comparison of iridocorneal angle in infants with retinopathy of prematurity and healthy infants using spectral domain optical coherence tomography. J AAPOS. 2014;18(4):344–6. https://doi.org/10.1016/j.jaapos.2014.02.016.

    Article  PubMed  Google Scholar 

  42. Pilat AV, Sheth V, Purohit R, Proudlock FA, Anwar S, Gottlob I. Hand-held optical coherence tomography imaging in children with anterior segment dysgenesis. Acta Ophthalmol. 2017;95(5):537–41. https://doi.org/10.1111/aos.13053.

    Article  PubMed  Google Scholar 

  43. Katagiri S, Yokoi T, Nishina S, Azuma N. Structure and morphology of radial retinal folds with familial exudative vitreoretinopathy. Ophthalmology. 2016;123(3):666–8. https://doi.org/10.1016/j.ophtha.2015.09.010.

    Article  PubMed  Google Scholar 

  44. Johnson BB, Hubbard GB 3rd, Mendoza PR, Grossniklaus HE. Distinctive white fundus lesions in familial exudative vitreoretinopathy: a newly characterized clinical feature. Retin Cases Brief Rep. 2017;11(4):291–5. https://doi.org/10.1097/ICB.0000000000000375.

    PubMed  Google Scholar 

  45. Yonekawa Y, Thomas BJ, Drenser KA, Trese MT, Capone A Jr. Familial exudative vitreoretinopathy: spectral-domain optical coherence tomography of the vitreoretinal Interface, retina, and choroid. Ophthalmology. 2015;122(11):2270–7. https://doi.org/10.1016/j.ophtha.2015.07.024.

    Article  PubMed  Google Scholar 

  46. Shields CL, Manalac J, Das C, Saktanasate J, Shields JA. Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults. Indian J Ophthalmol. 2015;63(2):128–32. https://doi.org/10.4103/0301-4738.154384.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mallipatna A, Vinekar A, Jayadev C, Dabir S, Sivakumar M, Krishnan N, et al. The use of handheld spectral domain optical coherence tomography in pediatric ophthalmology practice: our experience of 975 infants and children. Indian J Ophthalmol. 2015;63(7):586–93. https://doi.org/10.4103/0301-4738.167108.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Patel NA VC, Cernichiaro-Espinosa LA, Yannuzzi NA, Dias J, Gregori N, Berrocal AM. Optical coherence tomography angiography findings in children with juvenile X-linked retinoschisis. Under submission. 2017.

  49. Chen X, Viehland C, Carrasco-Zevallos OM, Keller B, Vajzovic L, Izatt JA, et al. Microscope-integrated optical coherence tomography angiography in the operating room in young children with retinal vascular disease. JAMA Ophthalmol. 2017;135(5):483–6. https://doi.org/10.1001/jamaophthalmol.2017.0422.

    Article  PubMed  Google Scholar 

  50. Campbell JP, Nudleman E, Yang J, Tan O, Chan RVP, Chiang MF, et al. Handheld optical coherence tomography angiography and ultra-wide-field optical coherence tomography in retinopathy of prematurity. JAMA Ophthalmol. 2017;135(9):977–81. https://doi.org/10.1001/jamaophthalmol.2017.2481.

    Article  PubMed  Google Scholar 

  51. Mandadi SKR, Agarwal A, Aggarwal K, Moharana B, Singh R, Sharma A, et al. Novel findings on optical coherence tomography angiography in patients with tubercular serpiginous-like choroiditis. Retina. 2017;37(9):1647–59. https://doi.org/10.1097/IAE.0000000000001412.

    Article  PubMed  Google Scholar 

  52. Falavarjani KG, Iafe NA, Velez FG, Schwartz SD, Sadda SR, Sarraf D, et al. Optical coherence tomography angiography of the fovea in children born preterm. Retina. 2017;37(12):2289–94. https://doi.org/10.1097/IAE.0000000000001471.

    Article  PubMed  Google Scholar 

  53. Yilmaz I, Ocak OB, Yilmaz BS, Inal A, Gokyigit B, Taskapili M. Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: an optical coherence tomography angiography study. J AAPOS. 2017;21(3):224–8. https://doi.org/10.1016/j.jaapos.2017.05.002.

    Article  PubMed  Google Scholar 

  54. Yonekawa Y, Todorich B, Trese MT. Optical coherence tomography angiography findings in Coats’ disease. Ophthalmology. 2016;123(9):1964. https://doi.org/10.1016/j.ophtha.2016.05.004.

    Article  PubMed  Google Scholar 

  55. Muakkassa NW, de Carlo TE, Choudhry N, Duker JS, Baumal CR. Optical coherence tomography angiography findings in Coats’ disease. Ophthalmic Surg Lasers Imaging Retina. 2016;47(7):632–5. https://doi.org/10.3928/23258160-20160707-04.

    Article  PubMed  Google Scholar 

  56. Fortunato M, Turtoro A, Cennamo G. Optical coherence tomography angiography in children with Leber-Coats disease. Ophthalmic Res. 2017;58(3):185–7. https://doi.org/10.1159/000478783.

    Article  PubMed  Google Scholar 

  57. Pahl DA, Green NS, Bhatia M, Chen RWS. New ways to detect pediatric sickle cell retinopathy: a comprehensive review. J Pediatr Hematol Oncol. 2017;39(8):618–25. https://doi.org/10.1097/MPH.0000000000000919.

    Article  PubMed  Google Scholar 

  58. Ehlers JP, Goshe J, Dupps WJ, Kaiser PK, Singh RP, Gans R, et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN results. JAMA Ophthalmol. 2015;133(10):1124–32. https://doi.org/10.1001/jamaophthalmol.2015.2376.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Siebelmann S, Hermann M, Dietlein T, Bachmann B, Steven P, Cursiefen C. Intraoperative optical coherence tomography in children with anterior segment anomalies. Ophthalmology. 2015;122(12):2582–4. https://doi.org/10.1016/j.ophtha.2015.06.004.

    Article  PubMed  Google Scholar 

  60. Marangoni D, Bush RA, Zeng Y, Wei LL, Ziccardi L, Vijayasarathy C, et al. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice. Mol Ther Methods Clin Dev. 2016;5:16011. https://doi.org/10.1038/mtm.2016.11.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wabbels B, Demmler A, Paunescu K, Wegscheider E, Preising MN, Lorenz B. Fundus autofluorescence in children and teenagers with hereditary retinal diseases. Graefes Arch Clin Exp Ophthalmol. 2006;244(1):36–45. https://doi.org/10.1007/s00417-005-0043-2.

    Article  PubMed  Google Scholar 

  62. Wong SC, Lee TC, Heier JS. 23-Gauge endoscopic vitrectomy. Dev Ophthalmol. 2014;54:108–19. https://doi.org/10.1159/000360456.

    Article  PubMed  Google Scholar 

  63. Farias CC, Ozturk HE, Albini TA, Berrocal AM, Amescua G, Betancurt C, et al. Use of intraocular video endoscopic examination in the preoperative evaluation of keratoprosthesis surgery to assess visual potential. Am J Ophthalmol. 2014;158(1):80–6 e2. https://doi.org/10.1016/j.ajo.2014.02.043.

    Article  PubMed  Google Scholar 

  64. Lee YS, Wang NK, Chen YP, Chen KJ, Hwang YS, Lai CC, et al. Plasmin enzyme-assisted vitrectomy in pediatric patients with vitreoretinal diseases. Ophthalmic Res. 2016;56(4):193–201. https://doi.org/10.1159/000447406.

    Article  CAS  PubMed  Google Scholar 

  65. Eckardt C, Paulo EB. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina. 2016;36(1):137–47. https://doi.org/10.1097/IAE.0000000000000689.

    Article  PubMed  Google Scholar 

  66. Kunikata H, Abe T, Nakazawa T. Heads-up macular surgery with a 27-gauge microincision vitrectomy system and minimal illumination. Case Rep Ophthalmol. 2016;7(3):265–9. https://doi.org/10.1159/000452993.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shen L, Carrasco-Zevallos O, Keller B, Viehland C, Waterman G, Hahn PS, et al. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography. Biomed Opt Express. 2016;7(5):1711–26. https://doi.org/10.1364/BOE.7.001711.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audina M. Berrocal.

Ethics declarations

Conflict of Interest

Audina Berrocal reports non-financial support from Dorc (Dutch Ophthalmic Research Center International BV, Holland) and Alcon, Inc. (CA, USA), outside the submitted work.

Linda Cernichiaro-Espinosa and Kimberly Tran declare no conflict of interest.

LACE: No financial/conflicting interest to disclose; KDT: No financial/conflicting interest to disclose; AMB is a consultant of Alcon, Inc. (CA, USA); and Dorc (Dutch Ophthalmic Research Center International BV, Holland) unrelated to this publication

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Retina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cernichiaro-Espinosa, L.A., Tran, K.D. & Berrocal, A.M. Imaging Modalities in Pediatric Vitreoretinal Disorders. Curr Ophthalmol Rep 6, 17–23 (2018). https://doi.org/10.1007/s40135-018-0159-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-018-0159-2

Keywords

Navigation