Skip to main content

Advertisement

Log in

Advanced Perceptual Learning Techniques Induce Neuroplasticity to Enable Improved Visual Functions

  • Refractive Surgery: From Laser to Intraocular Lenses (C. Starr, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Until recent years, there was low awareness that the brain’s ability to adapt to changes in sensory input through the modification of neural pathways and processing functions, i.e., neuroplasticity, remains after late adolescent development. Over the past few decades, an extensive body of evidence has established that neuroplasticity not only endures in the adult neuronal processing system, but can also be augmented using advanced perceptual learning training, resulting in improved vision and image processing speed. It is well-established that during the early period of life, termed as critical period, the sensory system displays high sensitivity to environmental stimuli and develops in a particular way owing to adapt to the visual input that is received from the eye. The process of balancing the refraction of the anterior ocular segment and the axial length of the eye to produce a focused image on the retina, i.e., emmetropization, occurs during the first few years of life. Emmetropization involves fine-tuning of the refractive state by altering the refractive components of the eye toward zero refraction. Recent studies have shown that compromised cortical processing, either due to abnormal development, e.g., amblyopia, or due to uncorrected and blurred visual input from the eye, e.g., myopia or presbyopia, can be remarkably strengthened resulting in improved visual performance functions independent of emmetropization. Therefore, advanced perceptual training can be of significant benefit to patients who undergo refractive surgery. In these patients, the correction of the optical input is suddenly altered changing the coherence between the input delivered from the eye and the steady-state cortical processing. This abrupt effect may pose the need for the image processing functions of the visual cortex to readapt to the modified visual input. Boosting cortical processing using perceptual learning may provide enhanced vision benefits for these patients and increase their satisfaction. Future perceptual learning techniques are being modified to serve as a complementary vision performance enhancement program to noninvasive procedures or stand-alone. The new programs will allow clinicians the opportunity to offer patients personalized perceptual learning programs to improve a variety of visual functions that are not currently addressed by conventional treatments or procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Polat U, Ma-Naim T, Belkin M, Sagi D. Improving vision in adult amblyopia by perceptual learning. Proc Natl Acad Sci USA. 2004;101(17):6692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polat U. Restoration of underdeveloped cortical functions: evidence from treatment of adult amblyopia. Restor Neurol Neurosci. 2008;26(4–5):413–24.

    PubMed  Google Scholar 

  3. Polat U, Ma-Naim T, Spierer A. Treatment of children with amblyopia by perceptual learning. Vis Res. 2009;49(21):2599–603.

    Article  PubMed  Google Scholar 

  4. Levi DM. Perceptual learning in adults with amblyopia: a reevaluation of critical periods in human vision. Dev Psychobiol. 2005;46(3):222–32.

    Article  PubMed  Google Scholar 

  5. Levi DM, Li RW. Perceptual learning as a potential treatment for amblyopia: a mini-review. Vis Res. 2009;49(21):2535–49.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Levi DM, Polat U. Neural plasticity in adults with amblyopia. Proc Natl Acad Sci USA. 1996;93(13):6830–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levi DM, Polat U, Hu YS. Improvement in Vernier acuity in adults with amblyopia. Practice makes better. Invest Ophthalmol Vis Sci. 1997;38(8):1493–510.

    CAS  PubMed  Google Scholar 

  8. Li RW, Young KG, Hoenig P, Levi DM. Perceptual learning improves visual performance in juvenile amblyopia. Invest Ophthalmol Vis Sci. 2005;46(9):3161–8.

    Article  PubMed  Google Scholar 

  9. Hou F, Huang CB, Tao L, Feng L, Zhou Y, Lu ZL. Training in contrast detection improves motion perception of sinewave gratings in amblyopia. Invest Ophthalmol Vis Sci. 2011;52(9):6501–10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou Y, Huang C, Xu P, Tao L, Qiu Z, Li X, Lu ZL. Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vis Res. 2006;46(5):739–50.

    Article  PubMed  Google Scholar 

  11. • Lev M, Gilaie-Dotan S, Gotthilf-Nezri D, Yehezkel O, Brooks JL, Perry A, Bentin S, Bonneh Y, Polat U. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia. Dev Sci. 2015;18(1):50–64. The manuscript show that perceptual learning in adult patient known as having visual agnosia with severe loss of visual functions results in remarkable improvements, and followed by initial improvements in cognitive functions.

  12. Tan DT, Fong A. Efficacy of neural vision therapy to enhance contrast sensitivity function and visual acuity in low myopia. J Cataract Refract Surg. 2008;34(4):570–7.

    Article  PubMed  Google Scholar 

  13. Polat U. Making perceptual learning practical to improve visual functions. Vis. Res. 2009;49(21):2566–73.

    Article  PubMed  Google Scholar 

  14. •• Polat U, Schor C, Tong JL, Zomet A, Lev M, Yehezkel O, Sterkin A, Levi DM. Training the brain to overcome the effect of aging on the human eye. Sci Rep. 2012;2:278. The first publication showing that perceptual learning can enable patients with presbyopia to read without reading glasses. This remarkable improvement is followed by improvements in reading speed. The results show that the optical parameters of the eyes didn’t change.

  15. Yehezkel O, Sterkin A, Lev M, Polat U. Training on spatiotemporal masking improves crowded and uncrowded visual acuity. J Vis. 2015;15(6):12.

  16. • DeLoss DJ, Watanabe T, Andersen GJ. Improving vision among older adults: behavioral training to improve sight. Psychol Sci. 2015;26(4):456–466. The manuscript show that perceptual learning improve vision in older adults.

  17. Lev M, Sterkin A, Doron R, Fried M, Mandel Y, Bar-On H, Polat U. Perceptual learning improves visual functions in TBI patients. 10th World congress on Brain Injury 2014.

  18. •• Lev M, Ludwig K, Gilaie-Dotan S, Voss S, Sterzer P, Hesselmann G, Polat U. Training improves visual processing speed and generalizes to untrained functions. Sci Rep. 2014;4:7251. The results show remarkable improvement in processing speed after perceptual learning in young participants, that lead to remarable shortening the time needed to see 20/20 vision.

  19. Polat U, Levy Y, Sterkin A, Yehezkel O, Lev M, Fried M, Doron R, Levian L, Porkoy R, Gordon B. Vision improvement in pilots with presbyopia. ARVO Meeting Abstracts 2014.

  20. Sterkin A, Yehezkel O, Lev M, Doron R, Fried M, Levy Y, Levian L, Pokroy R, Gordon B, Polat U. Perceptual learning improves near vision in pilots with eye aging. Visual Science Society (VSS) 2014.

  21. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond). 1962;160:106–54.

    Article  CAS  Google Scholar 

  22. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology. 1968;195(1):215–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marcelja S. Mathematical description of the responses of simple cortical cells. J Opt Soc Am. 1980;70(11):1297–300.

    Article  CAS  PubMed  Google Scholar 

  24. Neri P, Levi DM. Receptive versus perceptive fields from the reverse-correlation viewpoint. Vis Res. 2006;46(16):2465–74.

    Article  PubMed  Google Scholar 

  25. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970;206(2):419–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horton JC, Hocking DR. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosci. 1997;17(10):3684–709.

    CAS  PubMed  Google Scholar 

  27. Cohen Y, Belkin M, Yehezkel O, Avni I, Polat U. Light intensity modulates corneal power and refraction in the chick eye exposed to continuous light. Vis Res. 2008;48(21):2329–35.

    Article  PubMed  Google Scholar 

  28. Cohen Y, Belkin M, Yehezkel O, Solomon AS, Polat U. Dependency between light intensity and refractive development under light-dark cycles. Exp Eye Res. 2011;92(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  29. Mandel Y, Grotto I, El-Yaniv R, Belkin M, Israeli E, Polat U, Bartov E. Season of birth, natural light, and myopia. Ophthalmology. 2008;115(4):686–92.

    Article  PubMed  Google Scholar 

  30. Atkinson J, Anker S, Bobier W, Braddick O, Durden K, Nardini M, Watson P. Normal emmetropization in infants with spectacle correction for hyperopia. Invest Ophthalmol Vis Sci. 2000;41(12):3726–31.

    CAS  PubMed  Google Scholar 

  31. Ehrlich DL, Braddick OJ, Atkinson J, Anker S, Weeks F, Hartley T, Wade J, Rudenski A. Infant emmetropization: longitudinal changes in refraction components from nine to twenty months of age. Optom Vis Sci. 1997;74(10):822–43.

    Article  CAS  PubMed  Google Scholar 

  32. Greenwald MJ, Parks MM. Treatment of amblyopia. In: Hagerstown DT, editor. Clinical ophthalmology. 1st ed. New York: Harper and Row; 1999.

    Google Scholar 

  33. Prieto-Diaz J, Souza-Dias C. Strabismus. 4th ed. Boston: Butterworth-Heinemann; 2000.

    Google Scholar 

  34. von Noorden GK. New clinical aspects of stimulus deprivation amblyopia. Am J Ophthalmol. 1981;92(3):416–21.

    Article  Google Scholar 

  35. Prieto-Diaz J. S-DC: Strabismus. 4th ed. Boston: Butterworth-Heinemann; 2000.

    Google Scholar 

  36. • Doron R, Spierer A, Polat U. How crowding, masking, and contour interactions are related: a developmental approach. J Vis. 2015;15(8):5. The manuscript show that some visual functions developes late, beyond the classical critical period.

  37. El Mallah MK, Chakravarthy U, Hart PM. Amblyopia: is visual loss permanent? Br J Ophthalmol. 2000;84(9):952–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fahle M, Poggio T. Perceptual learning. Cambridge: MIT Press; 2002.

    Google Scholar 

  39. Gilbert CD, Sigman M, Crist RE. The neural basis of perceptual learning. Neuron. 2001;31(5):681–97.

    Article  CAS  PubMed  Google Scholar 

  40. Sagi D. Perceptual learning in vision research. Vis Res. 2011;51(13):1552–66.

    Article  PubMed  Google Scholar 

  41. Sagi D, Tanne D. Perceptual learning: learning to see. Curr Opin Neurobiol. 1994;4(2):195–9.

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki Y, Nanez JE, Watanabe T. Advances in visual perceptual learning and plasticity. Nat Rev Neurosci. 2010;11(1):53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci. 2010;30(45):14964–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gilbert CD, Das A, Ito M, Kapadia M, Westheimer G. Spatial integration and cortical dynamics. Proc Natl Acad Sci USA. 1996;93(2):615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Polat U, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM. Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature. 1998;391(6667):580–4.

    Article  CAS  PubMed  Google Scholar 

  46. Mizobe K, Polat U, Pettet MW, Kasamatsu T. Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Vis Neurosci. 2001;18(3):377–91.

    Article  CAS  PubMed  Google Scholar 

  47. Bolz J, Gilbert CD. The role of horizontal connections in generating long receptive fields in the cat visual cortex. Eur J Neurosci. 1989;1(3):263–8.

    Article  PubMed  Google Scholar 

  48. Das A, Gilbert CD. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex [see comments]. Nature. 1995;375(6534):780–4.

    Article  CAS  PubMed  Google Scholar 

  49. Gilbert C. Horizontal integration in the neocortex. TINS 1985;160–165.

  50. Gilbert CD. Horizontal integration and cortical dynamics. Neuron. 1992;9(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  51. Polat U, Sagi D. Spatial interactions in human vision: from near to far via experience-dependent cascades of connections. Proc Natl Acad Sci USA. 1994;91(4):1206–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Polat U, Sagi D, Norcia AM. Abnormal long-range spatial interactions in amblyopia. Vis Res. 1997;37(6):737–44.

    Article  CAS  PubMed  Google Scholar 

  53. Polat U. Functional architecture of long-range perceptual interactions. Spat Vis. 1999;12(2):143–62.

    Article  CAS  PubMed  Google Scholar 

  54. Polat U, Sagi D. The architecture of perceptual spatial interactions. Vis Res. 1994;34(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  55. Polat U, Norcia AM. Elongated physiological summation pools in the human visual cortex. Vis Res. 1998;38(23):3735–41.

    Article  CAS  PubMed  Google Scholar 

  56. Polat U, Tyler CW. What pattern the eye sees best. Vis Res. 1999;39(5):887–95.

    Article  CAS  PubMed  Google Scholar 

  57. Polat U, Bonneh Y, Ma-Naim T, Belkin M, Sagi D. Spatial interactions in amblyopia: effects of stimulus parameters and amblyopia type. Vis Res. 2005;45(11):1471–9.

    Article  CAS  PubMed  Google Scholar 

  58. Levi DM, Hariharan S, Klein SA. Suppressive and facilitatory spatial interactions in amblyopic vision. Vis Res. 2002;42(11):1379–94.

    Article  PubMed  Google Scholar 

  59. Ellemberg D, Hess RF, Arsenault AS. Lateral interactions in amblyopia. Vis Res. 2002;42(21):2471–8.

    Article  PubMed  Google Scholar 

  60. Polat U. Improvement abnormal spatial vision in adults with amblyopia. In: Jenkin MRM, Harris LR, editors. Seeing spatial form. New York: Oxford University Press; 2006. p. 371–80.

    Google Scholar 

  61. Chandna A, Pennefather PM, Kovacs I, Norcia AM. Contour integration deficits in anisometropic amblyopia. Invest Ophthalmol Vis Sci. 2001;42(3):875–8.

    CAS  PubMed  Google Scholar 

  62. Kovacs I, Polat U, Pennefather PM, Chandna A, Norcia AM. A new test of contour integration deficits in patients with a history of disrupted binocular experience during visual development. Vis Res. 2000;40(13):1775–83.

    Article  CAS  PubMed  Google Scholar 

  63. Hess RF, McIlhagga W, Field DJ. Contour integration in strabismic amblyopia: the sufficiency of an explanation based on positional uncertainty. Vis Res. 1997;37(22):3145–61.

    Article  CAS  PubMed  Google Scholar 

  64. Simmers AJ, Ledgeway T, Hess RF, McGraw PV. Deficits to global motion processing in human amblyopia. Vis Res. 2003;43(6):729–38.

    Article  PubMed  Google Scholar 

  65. Liu L, Wang K, Liao B, Xu L, Han S. Perceptual salience of global structures and the crowding effect in amblyopia. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 2004.

  66. Popple AV, Levi DM. Amblyopes see true alignment where normal observers see illusory tilt. Proc Natl Acad Sci USA. 2000;97(21):11667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wong EH, Levi DM, McGraw PV. Spatial interactions reveal inhibitory cortical networks in human amblyopia. Vis Res. 2005;45(21):2810–9.

    Article  PubMed  Google Scholar 

  68. Wong EH, Levi DM. Second-order spatial summation in amblyopia. Vis Res. 2005;45(21):2799–809.

    Article  PubMed  Google Scholar 

  69. Bonneh YS, Sagi D, Polat U. Local and non-local deficits in amblyopia: acuity and spatial interactions. Vis Res. 2004;44(27):3099–110.

    Article  PubMed  Google Scholar 

  70. Bonneh YS, Sagi D, Polat U. Spatial and temporal crowding in amblyopia. Vis Res. 2007;47(14):1950–62.

    Article  PubMed  Google Scholar 

  71. Levi DM. Crowding—an essential bottleneck for object recognition: a mini-review. Vis Res. 2008;48(5):635–54.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li RW, Provost A, Levi DM. Extended perceptual learning results in substantial recovery of positional acuity and visual acuity in juvenile amblyopia. Invest Ophthalmol Vis Sci. 2007;48(11):5046–51.

    Article  PubMed  Google Scholar 

  73. Li RW, Klein SA, Levi DM. Prolonged perceptual learning of positional acuity in adult amblyopia: perceptual template retuning dynamics. J Neurosci. 2008;28(52):14223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin CC, Chen PL. Improvement of visual acuity in children with anisometropic amblyopia treated with rotated prisms combined with near activity. Int J Ophthalmol. 2013;6(4):487–91.

    PubMed  PubMed Central  Google Scholar 

  75. Zhai J, Chen M, Liu L, Zhao X, Zhang H, Luo X, Gao J. Perceptual learning treatment in patients with anisometropic amblyopia: a neuroimaging study. Br J Ophthalmol. 2013;97(11):1420–4.

    Article  PubMed  Google Scholar 

  76. Polat A, Yehezkel O, Sterkin A, Lev M, Ma-Naim T. Brain plasticity overcomes presbyopia: persistence over time. AAO Annual Meeting 2013.

  77. Mansfield J, Ahn S, Legge G, Luebker A. A new reading-acuity chart for normal and low vision. Ophthalmic Visual Opt/Noninvasive Assess Visual Syst Tech Digest. 1993;3:232–5.

    Google Scholar 

  78. Li R, Polat U, Makous W, Bavelier D. Enhancing the contrast sensitivity function through action video game training. Nat Neurosci. 2009;12(5):549–51.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li R, Polat U, Scalzo F, Bavelier D. Reducing backward masking through action game training. J Vis. 2010;10(14):33.

    Article  PubMed  Google Scholar 

  80. Achtman RL, Green CS, Bavelier D. Video games as a tool to train visual skills. Restor Neurol Neurosci. 2008;26(4–5):435–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lev M, Gilaie-Dotan S, Gotthilf-Nezri D, Yehezkel O, Brooks JL, Perry A, Bentin S, Bonneh Y, Polat U. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia. Dev Sci. 2015;18(1):50–64.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lev M, Polat U. Training with dynamic mobile game for athletes shows significant improvement in speed of vision. Federation of European Neuroscience, Abstract, 2015.

Download references

Acknowledgments

Supported by InnoVision Labs, Inc. (f/k/a. Glassesoff Inc.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Polat.

Ethics declarations

Disclosure

Uri Polat has a financial relationship with InnoVision Labs, Inc. (f/k/a. Glassesoff Inc.) that sponsored this research.

Ethical Standards

This manuscript is describing results taken from several published and un-published studies that have been approved (when applicable) by an appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Refractive Surgery: From Laser to Intraocular Lenses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, U. Advanced Perceptual Learning Techniques Induce Neuroplasticity to Enable Improved Visual Functions. Curr Ophthalmol Rep 4, 1–7 (2016). https://doi.org/10.1007/s40135-016-0086-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-016-0086-z

Keywords

Navigation