Skip to main content
Log in

Higher-curvature corrections to holographic mutual information

  • Research
  • Published:
Journal of Theoretical and Applied Physics

Abstract

In this paper, we study some non-local measurements of quantum correlations in extended gravities with higher-order curvature terms, including conformal gravity. Precisely, we consider higher-curvature correction on holographic mutual information in conformal gravity. There is in fact one deformation in the states because of the higher-curvature corrections. Here by making use of the holographic methods, we study the deformation in the holographic mutual information due to the higher-curvature terms. We also address the change in the quantum phase transition due to these deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stelle, K.S.: Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  2. Tanhayi, M.R., Dengiz, S., Tekin, B.: Unitarity of Weyl-invariant new massive gravity and generation of graviton mass via symmetry breaking. Phys. Rev. D 85, 064008 (2012). https://doi.org/10.1103/PhysRevD.85.064008. arXiv:1112.2338 [hep-th]

    Article  ADS  Google Scholar 

  3. Tanhayi, M.R., Dengiz, S., Tekin, B.: Weyl-invariant higher curvature gravity theories in \(n\) dimensions. Phys. Rev. D 85, 064016 (2012). https://doi.org/10.1103/PhysRevD.85.064016. arXiv:1201.5068 [hep-th]

    Article  ADS  Google Scholar 

  4. Tanhayi, M.R., Pejhan, H., Takook, M.V.: Conformal linear gravity in de Sitter space II. Eur. Phys. J. C 72, 2052 (2012). https://doi.org/10.1140/epjc/s10052-012-2052-8. arXiv:1105.3060 [gr-qc]

  5. Rouhani, S., Takook, M.V., Tanhayi, M.R.: Linear Weyl gravity in de Sitter universe. JHEP 1012, 044 (2010). https://doi.org/10.1007/JHEP12(2010)044. arXiv:0903.2670 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  6. Dehghani, M., Rouhani, S., Takook, M.V., Tanhayi, M.R.: Conformally invariant ’massless’ spin-2 field in the de Sitter universe. Phys. Rev. D 77, 064028 (2008). https://doi.org/10.1103/PhysRevD.77.064028. arXiv:0805.2227 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  7. Behroozi, S., Rouhani, S., Takook, M.V., Tanhayi, M.R.: Conformally invariant wave equations and massless fields in de Sitter spacetime. Phys. Rev. D 74, 124014 (2006). https://doi.org/10.1103/PhysRevD.74.124014. arXiv:gr-qc/0512105

    Article  ADS  MathSciNet  Google Scholar 

  8. Maldacena, J.: Einstein gravity from conformal gravity. arXiv:1105.5632 [hep-th]

  9. Anderson, M.T.: \(L^2\) curvature and volume renormalization of AHE metrics on 4-manifolds. Math. Res. Lett. 8, 171 (2001). arXiv:math/001105

    Article  MathSciNet  Google Scholar 

  10. Alishahiha, M., Astaneh, A.F., Mozaffar, M.R.: Mohammadi: holographic entanglement entropy for 4D conformal gravity. JHEP 1402, 008 (2014). https://doi.org/10.1007/JHEP02(2014)008. arXiv:1311.4329 [hep-th]

    Article  ADS  MATH  Google Scholar 

  11. Hartnoll, S.A.: Horizons, holography and condensed matter. arXiv:1106.4324 [hep-th]

  12. Hartnoll, S.A.: Lectures on holographic methods for condensed matter physics. Class. Quantum Gravity 26, 224002 (2009). https://doi.org/10.1088/0264-9381/26/22/224002. arXiv:0903.3246 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hartnoll, S.A., Polchinski, J., Silverstein, E., Tong, D.: Towards strange metallic holography. JHEP 1004, 120 (2010). https://doi.org/10.1007/JHEP04(2010)120. arXiv:0912.1061 [hep-th]

    Article  ADS  MATH  Google Scholar 

  14. Faulkner, T., Iqbal, N., Liu, H., McGreevy, J., Vegh, D.: From black holes to strange metals. arXiv:1003.1728 [hep-th]

  15. Lu, H., Pang, Y., Pope, C.N., Vazquez-Poritz, J.F.: AdS and Lifshitz black holes in conformal and Einstein–Weyl gravities. Phys. Rev. D 86, 044011 (2012). arXiv:1204.1062 [hep-th]

    Article  ADS  Google Scholar 

  16. Nishioka, T., Ryu, S., Takayanagi, T.: Holographic entanglement entropy: an overview. J. Phys. A 42, 504008 (2009). https://doi.org/10.1088/1751-8113/42/50/504008. arXiv:0905.0932 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  17. Hubeny, V.E., Rangamani, M., Takayanagi, T.: A covariant holographic entanglement entropy proposal. JHEP 0707, 062 (2007). https://doi.org/10.1088/1126-6708/2007/07/062. arXiv:0705.0016 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  18. Hung, L.Y., Myers, R.C., Smolkin, M.: On holographic entanglement entropy and higher curvature gravity. JHEP 1104, 025 (2011). https://doi.org/10.1007/JHEP04(2011)025. arXiv:1101.5813 [hep-th]

    Article  ADS  Google Scholar 

  19. Fursaev, D.V., Patrushev, A., Solodukhin, S.N.: Distributional geometry of squashed cones. Phys. Rev. D 88(4), 044054 (2013). https://doi.org/10.1103/PhysRevD.88.044054. arXiv:1306.4000 [hep-th]

    Article  ADS  Google Scholar 

  20. Dong, X.: Holographic entanglement entropy for general higher derivative gravity. JHEP 1401, 044 (2014). https://doi.org/10.1007/JHEP01(2014)044. arXiv:1310.5713 [hep-th]

    Article  ADS  MATH  Google Scholar 

  21. Camps, J.: Generalized entropy and higher derivative gravity. JHEP 1403, 070 (2014). https://doi.org/10.1007/JHEP03(2014)070. arXiv:1310.6659 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. de Boer, J., Kulaxizi, M., Parnachev, A.: Holographic entanglement entropy in lovelock gravities. JHEP 1107, 109 (2011). https://doi.org/10.1007/JHEP07(2011)109. arXiv:1101.5781 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Mozaffar, M.R.M., Mollabashi, A., Sheikh-Jabbari, M.M., Vahidinia, M.H.: Holographic entanglement entropy, field redefinition invariance and higher derivative gravity theories. Phys. Rev. D, 94(4), 046002 (2016). https://doi.org/10.1103/PhysRevD.94.046002. arXiv:1603.05713 [hep-th]

  24. Bueno, P., Ramirez, P.F.: Higher-curvature corrections to holographic entanglement entropy in geometries with hyperscaling violation. JHEP 1412, 078 (2014). https://doi.org/10.1007/JHEP12(2014)078. arXiv:1408.6380 [hep-th]

    Article  ADS  Google Scholar 

  25. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865. arXiv:quant-ph/0702225

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Bernamonti, A., Copland, N., Craps, B., Galli, F.: Holographic thermalization of mutual and tripartite information in 2d CFTs. PoS Corfu 2012, 120 (2013). arXiv:1212.0848 [hep-th]

    Google Scholar 

  27. Casini, H., Huerta, M.: Remarks on the entanglement entropy for disconnected regions. JHEP 0903, 048 (2009). https://doi.org/10.1088/1126-6708/2009/03/048. arXiv:0812.1773 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  28. Headrick, M.: Entanglement Renyi entropies in holographic theories. Phys. Rev. D 82, 126010 (2010). https://doi.org/10.1103/PhysRevD.82.126010. arXiv:1006.0047 [hep-th]

    Article  ADS  Google Scholar 

  29. Hayden, P., Headrick, M., Maloney, A.: Holographic mutual information is monogamous. Phys. Rev. D 87(4), 046003 (2013). https://doi.org/10.1103/PhysRevD.87.046003. arXiv:1107.2940 [hep-th]

    Article  ADS  Google Scholar 

  30. Mozaffar, M.R.M., Mollabashi, A., Omidi, F.: Holographic mutual information for singular surfaces. JHEP 1512, 082 (2015). https://doi.org/10.1007/JHEP12(2015)082. arXiv:1511.00244 [hep-th]

  31. Alishahiha, M., Mozaffar, M.R.M., Tanhayi, M.R.: On the time evolution of holographic n-partite information. JHEP 1509, 165 (2015). https://doi.org/10.1007/JHEP09(2015)165. arXiv:1406.7677 [hep-th]

  32. Mirabi, S., Tanhayi, M.R., Vazirian, R.: On the monogamy of holographic \(n\)-partite information. Phys. Rev. D 93(10), 104049 (2016). https://doi.org/10.1103/PhysRevD.93.104049. arXiv:1603.00184 [hep-th]

    Article  ADS  Google Scholar 

  33. Pastawski, F., Yoshida, B., Harlow, D., Preskill, J.: Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. JHEP 1506, 149 (2015). https://doi.org/10.1007/JHEP06(2015)149. arXiv:1503.06237 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Almheiri, A., Dong, X., Harlow, D.: Bulk locality and quantum error correction in AdS/CFT. J. High Energy Phys. 2015(4), 163 (2015)

    Article  MathSciNet  Google Scholar 

  35. Headrick, M., Takayanagi, T.: A holographic proof of the strong subadditivity of entanglement entropy. Phys. Rev. D 76, 106013 (2007). arXiv:0704.3719

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mohsen Alishahiha, for his helpful comments and discussions. MRT also wishes to acknowledge A. Akhvan and F. Omidi for some their comments. This work has been supported in parts by IAUCTB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Tanhayi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: some useful mathematical relations

Appendix: some useful mathematical relations

Here in this appendix, we present some useful relations that we have used in this paper. Let us choose a five-dimensional metric with coordinate trxyz as follows

$$\begin{aligned} \left( \begin{array}{ccccc} -\frac{f(r)}{r^2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{r^2 f(r)} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{r^2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{r^2} \\ \end{array} \right) \end{aligned}$$

The determinant of the induced metric reads as

$$\begin{aligned} \frac{1}{r^6 f(r)}+\frac{x'(r)^2}{r^6} \end{aligned}$$

Therefore, two normal vectors are obtained as

$$\begin{aligned}&\left\{ \frac{1}{\sqrt{\frac{r^2}{f(r)}}},0,0,0,0\right\} ,\\&\quad \left\{ 0,-\frac{x'(r)}{\sqrt{r^2 f(r) x'(r)^2+r^2}},\frac{1}{\sqrt{r^2 f(r) x'(r)^2+r^2}},0,0\right\} \end{aligned}$$

The nonzero component of the extrinsic curvature ten reads as

$$\begin{aligned} {{{\mathcal {K}}}}_{11} &= \frac{-r f'(r) x'(r)+2 f(r)^2 x'(r)^3+2 f(r) \left( x'(r)-r x''(r)\right) }{2 r^2 f(r) \left( f(r) x'(r)^2+1\right) ^{5/2}}\\ {{{\mathcal {K}}}}_{12} &= \frac{x'(r) \left( -r f'(r) x'(r)+2 f(r)^2 x'(r)^3+2 f(r) \left( x'(r)-r x''(r)\right) \right) }{2 r^2 \left( f(r) x'(r)^2+1\right) ^{5/2}}\\ {{{\mathcal {K}}}}_{21} &= \frac{x'(r) \left( -r f'(r) x'(r)+2 f(r)^2 x'(r)^3+2 f(r) \left( x'(r)-r x''(r)\right) \right) }{2 r^2 \left( f(r) x'(r)^2+1\right) ^{5/2}}\\ {{{\mathcal {K}}}}_{22} &= \frac{f(r) x'(r)^2 \left( -r f'(r) x'(r)+2 f(r)^2 x'(r)^3+2 f(r) \left( x'(r)-r x''(r)\right) \right) }{2 r^2 \left( f(r) x'(r)^2+1\right) ^{5/2}}\\ {{{\mathcal {K}}}}_{33} &= \frac{f(r) x'(r)}{r^2 \sqrt{f(r) x'(r)^2+1}}\\ {{{\mathcal {K}}}}_{44} &= \frac{f(r) x'(r)}{r^2 \sqrt{f(r) x'(r)^2+1}} \end{aligned}$$

and also one finds

$$\begin{aligned}&{R_{\mu \nu }}n_i^\mu n_i^\nu \\&\quad =\frac{r f'(r)-4 f(r)}{f(r) x'(r)^2+1}\\&\qquad -\frac{f(r) x'(r)^2 \left( r^2 f''(r)-5 r f'(r)+8 f(r)\right) }{2 \left( f(r) x'(r)^2+1\right) }\\&\qquad +\frac{1}{2} \left( -r \left( r f''(r)-5 f'(r)\right) -8 f(r)\right) \\&{R_{\mu \nu \alpha \beta }}n_i^\mu n_i^\alpha n_j^\nu n_j^\beta \\&\quad =-2 \left( \frac{f(r) x'(r)^2 \left( r^2 f''(r)-2 r f'(r)+2 f(r)\right) }{2 \left( f(r) x'(r)^2+1\right) }\right. \\&\qquad \left. -\frac{r f'(r)-2 f(r)}{2 \left( f(r) x'(r)^2+1\right) }\right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, H., Tanhayi, M.R. Higher-curvature corrections to holographic mutual information. J Theor Appl Phys 14, 171–179 (2020). https://doi.org/10.1007/s40094-020-00367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40094-020-00367-4

Keywords

Navigation