Skip to main content
Log in

A Vitronectin-Derived Peptide Restores Ovariectomy-Induced Bone Loss by Dual Regulation of Bone Remodeling

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Bone remodeling is tightly regulated through bone resorption and bone formation; imbalances in bone remodeling can cause various pathological conditions such as osteoporosis. Antiresorptive agents commonly used for treating osteoporosis do not substantially reverse osteoporotic bone loss.

Methods:

We evaluated the effects of the RVYFFKGKQYWE motif (residues 270–281; VnP-16) of human vitronectin on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and osteoclastogenesis of bone marrow-derived macrophages. The effects of VnP-16 were also assessed in a mouse model of estrogen deficiency-induced osteoporosis (ovariectomized female C57BL/6 mice). To assay whether VnP-16 can reverse ovariectomy-induced bone loss, synthetic peptides or vehicle were subcutaneously injected into ovariectomized mice once a week for 4 weeks (n = 10/group). To evaluate the bone restorative effects of VnP-16, in-vivo micro-computed tomography analysis and histological staining were performed.

Results:

VnP-16 induced osteogenic differentiation of hMSCs and inhibited the RANKL–RANK–TRAF6 axis in the osteoclastogenesis signaling pathway. Furthermore, systemic administration of VnP-16 reversed ovariectomy-induced bone loss in the femoral neck, distal femur and lumbar spine by increasing osteoblast differentiation and promoting bone formation, and concomitantly decreasing osteoclastogenesis and inhibiting bone resorption. The bone restorative effect of VnP-16 was observed one week after subcutaneous administration, and although the timing of the effect differed according to bone location, it persisted for at least 3 weeks.

Conclusion:

Our findings suggest that VnP-16 is a potential therapeutic agent for treating osteoporosis that mediates its effects through dual regulation of bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Broadhead ML, Clark JC, Dass CR, Choong PF, Myers DE. Therapeutic targeting of osteoclast function and pathways. Expert Opin Ther Targets. 2011;15:169–81.

    PubMed  Google Scholar 

  2. Kim SH, Moon SH. Osteoclast differentiation inhibitors: a patent review (2008–2012). Expert Opin Ther Pat. 2013;23:1591–610.

    CAS  Google Scholar 

  3. Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev. 2005;208:30–49.

    CAS  PubMed  Google Scholar 

  4. Looker AC, Borrud LG, Dawson-Hughes B, Shepherd JA, Wright NC. Osteoporosis or low bone mass at the femur neck or lumbar spine in older adults: United States, 2005–2008. NCHS Data Brief. 2012;93:1–8.

    Google Scholar 

  5. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29:2520–6.

    PubMed  Google Scholar 

  6. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377:1276–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Karagas MR, Lu-Yao GL, Barrett JA, Beach ML, Baron JA. Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol. 1996;143:677–82.

    CAS  PubMed  Google Scholar 

  8. Wang Y, Ma JX, Yin T, Han Z, Cui SS, Liu Z, et al. Correlation between reduction quality of femoral neck fracture and femoral head necrosis based on biomechanics. Orthop Surg. 2019;11:318–24.

    PubMed  PubMed Central  Google Scholar 

  9. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353:878–82.

    CAS  PubMed  Google Scholar 

  10. Kannegaard PN, van der Mark S, Eiken P, Abrahamsen B. Excess mortality in men compared with women following a hip fracture National analysis of comedications, comorbidity and survival. Age Ageing. 2010;39:203–9.

    PubMed  Google Scholar 

  11. Dzupa V, Bartonicek J, Skála-Rosenbaum J, Prikazsky V. Mortality in patients with proximal femoral fractures during the first year after the injury. Acta Chir Orthop Traumatol Cech. 2002;69:39–44.

    CAS  PubMed  Google Scholar 

  12. Bigoni M, Turati M, Leone G, Caminita AD, D’Angelo F, Munegato D, et al. Internal fixation of intracapsular femoral neck fractures in elderly patients: mortality and reoperation rate. Aging Clin Exp Res. 2020;32:1173–8.

    PubMed  Google Scholar 

  13. National Osteoporosis Society. In: Drug treatment. Royal Osteoporosis Society; 2012. https://theros.org.uk of subordinate document.

  14. Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360:53–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    CAS  PubMed  Google Scholar 

  16. Delmas PD. Clinical potential of RANKL inhibition for the management of postmenopausal osteoporosis and other metabolic bone diseases. J Clin Densitom. 2008;11:325–38.

    PubMed  Google Scholar 

  17. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–76.

    CAS  PubMed  Google Scholar 

  18. Naylor KE, Bradburn M, Paggiosi MA, Gossiel F, Peel NFA, McCloskey EV, et al. Effects of discontinuing oral bisphosphonate treatments for postmenopausal osteoporosis on bone turnover markers and bone density. Osteoporos Int. 2018;29:1407–17.

    CAS  PubMed  Google Scholar 

  19. Edwards BJ, Gounder M, McKoy JM, Boyd I, Farrugia M, Migliorati C, et al. Pharmacovigilance and reporting oversight in US FDA fast-track process: bisphosphonates and osteonecrosis of the jaw. Lancet Oncol. 2008;9:1166–72.

    PubMed  Google Scholar 

  20. Uyanne J, Calhoun CC, Le AD. Antiresorptive drug-related osteonecrosis of the jaw. Dent Clin North Am. 2014;58:369–84.

    PubMed  Google Scholar 

  21. Berenson JR, Stopeck AT, Rajkumar SV. In: Medication-related osteonecrosis of the jaw in patients with cancer. UpToDate. 2016. https://www.uptodate.com/contents/medication-related-osteonecrosis-of-the-jaw-in-patients-with-cancer

  22. Diab DL, Watts NB. Bisphosphonate drug holiday: who, when and how long. Ther Adv Musculoskelet Dis. 2013;5:107–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee SH, Gong HS, Kim TH, Park SY, Shin JH, Cho SW, et al. Position statement: Drug holiday in osteoporosis treatment with bisphosphonates in South Korea. J Bone Metab. 2015;22:167–74.

    PubMed  PubMed Central  Google Scholar 

  24. Min SK, Kang HK, Jung SY, Jang DH, Min BM. A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation. Cell Death Differ. 2018;25:268–81.

    CAS  PubMed  Google Scholar 

  25. Dettin M, Bagno A, Morpurgo M, Cacchioli A, Conconi MT, Di Bello C, et al. Evaluation of silicon dioxide-based coating enriched with bioactive peptides mapped on human vitronectin and fibronectin: in vitro and in vivo assays. Tissue Eng. 2006;12:3509–23.

    CAS  PubMed  Google Scholar 

  26. Lee JY, Choi YS, Lee SJ, Chung CP, Park YJ. Bioactive peptide-modified biomaterials for bone regeneration. Curr Pharm Des. 2011;17:2663–76.

    CAS  PubMed  Google Scholar 

  27. Molek P, Strukelj B, Bratkovic T. Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules. 2011;16:857–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Slingluff CL Jr. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J. 2011;17:343–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tella SH, Kommalapati A, Correa R. Profile of abaloparatide and its potential in the treatment of postmenopausal osteoporosis. Cureus. 2017;9:e1300.

    PubMed  PubMed Central  Google Scholar 

  30. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: A randomized clinical trial. JAMA. 2016;316:722–33.

    CAS  PubMed  Google Scholar 

  31. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    CAS  PubMed  Google Scholar 

  32. Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA. Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int. 2010;21:1041–5.

    CAS  PubMed  Google Scholar 

  33. Vahle JL, Sato M, Long GG, Young JK, Francis PC, Engelhardt JA, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30:312–21.

    CAS  PubMed  Google Scholar 

  34. Pleiner-Duxneuner J, Zwettler E, Paschalis E, Roschger P, Nell-Duxneuner V, Klaushofer K, et al. Treatment of osteoporosis with parathyroid hormone and teriparatide. Calcif Tissue Int. 2009;84:159–70.

    CAS  PubMed  Google Scholar 

  35. Riek AE, Towler DA. The pharmacological management of osteoporosis. Mo Med. 2011;108:118–23.

    PubMed  PubMed Central  Google Scholar 

  36. Hayman EG, Pierschbacher MD, Ohgren Y, Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 1983;80:4003–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schvartz I, Seger D, Shaltiel S. Vitronectin. Int J Biochem Cell Biol. 1999;31:539–44.

    CAS  PubMed  Google Scholar 

  38. Seiffert D. Detection of vitronectin in mineralized bone matrix. J Histochem Cytochem. 1996;44:275–80.

    CAS  PubMed  Google Scholar 

  39. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6:1082–93.

    CAS  PubMed  Google Scholar 

  40. Kang HK, Min SK, Jung SY, Jung K, Jang DH, Kim OB, et al. The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo. Int J Mol Med. 2011;28:1001–11.

    CAS  PubMed  Google Scholar 

  41. Jung SY, Min BM. A vitronectin-derived dimeric peptide suppresses osteoclastogenesis by binding to c-Fms and inhibiting M-CSF signaling. Exp Cell Res. 2022;418:113252.

    CAS  PubMed  Google Scholar 

  42. Lavoie JF, Biernaskie JA, Chen Y, Bagli D, Alman B, Kaplan DR, et al. Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem Cells Dev. 2009;2009:893–906.

    Google Scholar 

  43. Gruber HE. Adaptations of Goldner’s Masson trichrome stain for the study of undecalcified plastic embedded bone. Biotech Histochem. 1992;67:30–4.

    CAS  PubMed  Google Scholar 

  44. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292–304.

    CAS  PubMed  Google Scholar 

  45. Ji JD, Park-Min KH, Shen Z, Fajardo RJ, Goldring SR, McHugh KP, et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-γ in human osteoclast precursors. J Immunol. 2009;183:7223–33.

    CAS  PubMed  Google Scholar 

  46. Feng X, Teitelbaum SL. Osteoclasts: new Insights. Bone Res. 2013;1:11–26.

    PubMed  Google Scholar 

  47. Arai A, Mizoguchi T, Harada S, Kobayashi Y, Nakamichi Y, Yasuda H, et al. Fos plays an essential role in the upregulation of RANK expression in osteoclast precursors within the bone microenvironment. J Cell Sci. 2012;125:2910–7.

    CAS  PubMed  Google Scholar 

  48. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors. J Exp Med. 1999;190:1741–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Aoki K, Alles N, Soysa N, Ohya K. Peptide-based delivery to bone. Adv Drug Deliv Rev. 2012;64:1220–38.

    CAS  PubMed  Google Scholar 

  50. Bab I, Chorev M. Osteogenic growth peptide: From concept to drug design. Biopolymers. 2002;66:33–48.

    CAS  PubMed  Google Scholar 

  51. Esmaiel J. Osteogenic peptides in bone regeneration. Curr Pharm Des. 2013;19:3391–402.

    Google Scholar 

  52. Pigossi SC, Medeiros MC, Saska S, Cirelli JA, Scarel-Caminaga RM. Role of osteogenic growth peptide (OGP) and OGP(10–14) in bone regeneration: a review. Int J Mol Sci. 2016;17:1885.

    PubMed Central  Google Scholar 

  53. Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV. The role of peptides in bone healing and regeneration: A systematic review. BMC Med. 2016;14:103.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants, funded by the Korean government (2016R1A2B2007246 and 2019R1F1A1054209), and the Korea Healthcare Technology R&D Project, funded by the Ministry for Health, Welfare & Family Affairs, Republic of Korea (HI15C2455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Moo Min.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical statement

All procedures for obtaining human tissue specimens were reviewed and approved by the Institutional Review Board on Human Subjects Research and the Ethics Committee at Seoul National University Dental Hospital (Approval Number: CRI12004G). All animal procedures were reviewed and approved by the animal care committee of the Institute of Laboratory Animal Resources of Seoul National University (Approval Number: SNU-151104-4-2).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2764 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H.K., Park, C.Y., Jung, S.Y. et al. A Vitronectin-Derived Peptide Restores Ovariectomy-Induced Bone Loss by Dual Regulation of Bone Remodeling. Tissue Eng Regen Med 19, 1359–1376 (2022). https://doi.org/10.1007/s13770-022-00486-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00486-w

Keywords

Navigation