Skip to main content
Log in

Glucose Uptake and Insulin Response in Tissue-engineered Human Skeletal Muscle

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Tissue-engineered muscles (“myobundles”) offer a promising platform for developing a human in vitro model of healthy and diseased muscle for drug development and testing. Compared to traditional monolayer cultures, myobundles better model the three-dimensional structure of native skeletal muscle and are amenable to diverse functional measures to monitor the muscle health and drug response. Characterizing the metabolic function of human myobundles is of particular interest to enable their utilization in mechanistic studies of human metabolic diseases, identification of related drug targets, and systematic studies of drug safety and efficacy.

Methods:

To this end, we studied glucose uptake and insulin responsiveness in human tissue-engineered skeletal muscle myobundles in the basal state and in response to drug treatments.

Results:

In the human skeletal muscle myobundle system, insulin stimulates a 50% increase in 2-deoxyglucose (2-DG) uptake with a compiled EC50 of 0.27 ± 0.03 nM. Treatment of myobundles with 400 µM metformin increased basal 2-DG uptake 1.7-fold and caused a significant drop in twitch and tetanus contractile force along with decreased fatigue resistance. Treatment with the histone deacetylase inhibitor 4-phenylbutyrate (4-PBA) increased the magnitude of insulin response from a 1.2-fold increase in glucose uptake in the untreated state to a 1.4-fold increase after 4-PBA treatment. 4-PBA treated myobundles also exhibited increased fatigue resistance and increased twitch half-relaxation time.

Conclusion:

Although tissue-engineered human myobundles exhibit a modest increase in glucose uptake in response to insulin, they recapitulate key features of in vivo insulin sensitivity and exhibit relevant drug-mediated perturbations in contractile function and glucose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2-DG:

2-deoxyglucose

4-PBA:

4-phenylbutyrate, histone deacetylase inhibitor

ACA:

6-aminocaproic acid

AMPK:

5′AMP-activated protein kinase

C2C12:

A line of mouse myoblasts

DMEM:

Dulbecco’s Modified Eagle Medium

ECL:

Enhanced chemiluminescent

EGF:

Epidermal growth factor

GLUT1:

Glucose transporter responsible for constitutive glucose uptake

GLUT3:

Glucose transporter most often expressed in neurons

GLUT4:

Glucose transporter responsible for insulin-mediated glucose uptake

HDAC:

Histone deacetylase

HRP:

Horseradish peroxidase

hGM:

Human growth media

IRS-1/PI3K/Akt:

Insulin receptor substrate (IRS)-1 is a signaling molecule that after activation interacts with phosphoinositide 3-kinase (PI3K) and serine/threonine protein kinases to regulate GLUT4

LAA:

Low amino acid

MHC:

Myosin heavy chain protein

MYH1:

Fast twitch type IIX MHC

MYH3:

Immature embryonic form of MHC

MYH7:

Slow twitch type I MHC

MYH8:

Perinatal isoform of MHC

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

TBST:

Tris-buffered saline and 0.1% Tween 20 solution

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α is a transcriptional coactivator involved in cellular energy metabolism

References

  1. Janssen I, Heymsfield SB, Wang ZM. Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985). 2000;89:81–8.

    CAS  Google Scholar 

  2. Latroche C, Gitiaux C, Chrétien F, Desguerre I, Mounier R, Chazaud B. Skeletal muscle microvasculature: a highly dynamic lifeline. Physiology (Bethesda). 2015;30:417–27.

    CAS  PubMed  Google Scholar 

  3. Collinsworth AM, Zhang S, Kraus WE, Truskey GA. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am J Physiol Cell Physiol. 2002;283:C1219–27.

    CAS  PubMed  Google Scholar 

  4. Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife. 2015;4:e04885.

    PubMed  PubMed Central  Google Scholar 

  5. Davis BN, Santoso JW, Walker MJ, Cheng CS, Koves TR, Kraus WE, et al. Human, tissue-engineered, skeletal muscle myobundles to measure oxygen uptake and assess mitochondrial toxicity. Tissue Eng Part C Methods. 2017;23:189–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng CS, Ran L, Bursac N, Kraus WE, Truskey GA. Cell density and joint microRNA-133a and microRNA-696 inhibition enhance differentiation and contractile function of engineered human skeletal muscle tissues. Tissue Eng Part A. 2016;22:573–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, et al. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials. 2019;198:259–69.

    CAS  PubMed  Google Scholar 

  8. Truskey GA, Achneck HE, Bursac N, Chan H, Cheng CS, Fernandez C, et al. Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing. Stem Cell Res Ther. 2013;4:S10.

    PubMed  PubMed Central  Google Scholar 

  9. Baron AD, Brechtel G, Wallace P, Edelman SV. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988;255:E769–74.

    CAS  PubMed  Google Scholar 

  10. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85–96.

    CAS  PubMed  Google Scholar 

  11. Middelbeek RJ, Chambers MA, Tantiwong P, Treebak JT, An D, Hirshman MF, et al. Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle. Nutr Diabetes. 2013;3:e74.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker EL, Dennis RG, Larkin LM. Glucose transporter content and glucose uptake in skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim. 2003;39:434–9.

    CAS  PubMed  Google Scholar 

  13. Khodabukus A, Baar K. Glucose concentration and streptomycin alter in vitro muscle function and metabolism. J Cell Physiol. 2015;230:1226–34.

    CAS  PubMed  Google Scholar 

  14. Khodabukus A, Baar K. The effect of serum origin on tissue engineered skeletal muscle function. J Cell Biochem. 2014;115:2198–207.

    CAS  PubMed  Google Scholar 

  15. Khodabukus A, Baehr LM, Bodine SC, Baar K. Role of contraction duration in inducing fast-to-slow contractile and metabolic protein and functional changes in engineered muscle. J Cell Physiol. 2015;230:2489–97.

    CAS  PubMed  Google Scholar 

  16. Khodabukus A, Baar K. Contractile and metabolic properties of engineered skeletal muscle derived from slow and fast phenotype mouse muscle. J Cell Physiol. 2015;230:1750–7.

    CAS  PubMed  Google Scholar 

  17. Krauss RS, Joseph GA, Goel AJ. Keep your friends close: cell-cell contact and skeletal myogenesis. Cold Spring Harb Perspect Biol. 2017;9:a029298.

    PubMed  PubMed Central  Google Scholar 

  18. Lemke SB, Schnorrer F. Mechanical forces during muscle development. Mech Dev. 2017;144:92–101.

    CAS  PubMed  Google Scholar 

  19. Ahmad K, Lee EJ, Moon JS, Park SY, Choi I. Multifaceted interweaving between extracellular matrix, insulin resistance, and skeletal muscle. Cells. 2018;7:E148.

    PubMed  Google Scholar 

  20. Williams AS, Kang L, Wasserman DH. The extracellular matrix and insulin resistance. Trends Endocrinol Metab. 2015;26:357–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348:607–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.

    CAS  PubMed  Google Scholar 

  23. Turban S, Stretton C, Drouin O, Green CJ, Watson ML, Gray A, et al. Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells. J Biol Chem. 2012;287:20088–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gholobova D, Gerard M, Decroix L, Desender L, Callewaert N, Annaert P, et al. Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and toxicity after intramuscular injection. Sci Rep. 2018;8:12206.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin M, Kettmann R, Dequiedt F. Class IIa histone deacetylases: regulating the regulators. Oncogene. 2007;26:5450–67.

    CAS  PubMed  Google Scholar 

  26. Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem. 2001;276:17007–13.

    CAS  PubMed  Google Scholar 

  27. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408:106–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell. 2000;6:233–44.

    CAS  PubMed  Google Scholar 

  29. Cohen TJ, Choi MC, Kapur M, Lira VA, Yan Z, Yao TP. HDAC4 regulates muscle fiber type-specific gene expression programs. Mol Cells. 2015;38:343–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaur V, Connor T, Sanigorski A, Martin SD, Bruce CR, Henstridge DC, et al. Disruption of the class IIa HDAC corepressor complex increases energy expenditure and lipid oxidation. Cell Rep. 2016;16:2802–10.

    CAS  PubMed  Google Scholar 

  31. Yamamoto N, Ueda M, Sato T, Kawasaki K, Sawada K, Kawabata K, et al. Measurement of glucose uptake in cultured cells. Curr Protoc Pharmacol. 2011;55:12.14.1–22. https://doi.org/10.1002/0471141755.ph1214s55.

    Article  Google Scholar 

  32. Li G, Barrett EJ, Wang H, Chai W, Liu Z. Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology. 2005;146:4690–6.

    CAS  PubMed  Google Scholar 

  33. Sarabia V, Lam L, Burdett E, Leiter LA, Klip A. Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin. J Clin Invest. 1992;90:1386–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarabia V, Ramlal T, Klip A. Glucose uptake in human and animal muscle cells in culture. Biochem Cell Biol. 1990;68:536–42.

    CAS  PubMed  Google Scholar 

  35. Ciaraldi TP, Abrams L, Nikoulina S, Mudaliar S, Henry RR. Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects. J Clin Invest. 1995;96:2820–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ciaraldi TP, Phillips SA, Carter L, Aroda V, Mudaliar S, Henry RR. Effects of the rapid-acting insulin analog glulisine on cultured human skeletal muscle cells: comparisons with insulin and insulin-like growth factor I. J Clin Endocrinol Metab. 2005;90:5551–8.

    CAS  PubMed  Google Scholar 

  37. Henry RR, Abrams L, Nikoulina S, Ciaraldi TP. Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures. Diabetes. 1995;44:936–46.

    CAS  PubMed  Google Scholar 

  38. Al-Khalili L, Chibalin AV, Kannisto K, Zhang BB, Permert J, Holman GD, et al. Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content. Cell Mol Life Sci. 2003;60:991–8.

    CAS  PubMed  Google Scholar 

  39. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30:1000–7.

    CAS  PubMed  Google Scholar 

  40. Bonadonna RC, Del Prato S, Saccomani MP, Bonora E, Gulli G, Ferrannini E, et al. Transmembrane glucose transport in skeletal muscle of patients with non-insulin-dependent diabetes. J Clin Invest. 1993;92:486–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonadonna RC, Groop L, Kraemer N, Ferrannini E, Del Prato S, DeFronzo RA. Obesity and insulin resistance in humans: a dose-response study. Metabolism. 1990;39:452–9.

    CAS  PubMed  Google Scholar 

  42. Yki-Järvinen H, Young AA, Lamkin C, Foley JE. Kinetics of glucose disposal in whole body and across the forearm in man. J Clin Invest. 1987;79:1713–9.

    PubMed  PubMed Central  Google Scholar 

  43. Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279.

    PubMed  PubMed Central  Google Scholar 

  44. Popov DV, Lysenko EA, Butkov AD, Vepkhvadze TF, Perfilov DV, Vinogradova OL. AMPK does not play a requisite role in regulation of PPARGC1A gene expression via the alternative promoter in endurance-trained human skeletal muscle. Exp Physiol. 2017;102:366–75.

    CAS  PubMed  Google Scholar 

  45. Kim YB, Ciaraldi TP, Kong A, Kim D, Chu N, Mohideen P, et al. Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110beta protein levels in skeletal muscle of type 2 diabetic subjects. Diabetes. 2002;51:443–8.

    CAS  PubMed  Google Scholar 

  46. Natali A, Ferrannini E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia. 2006;49:434–41.

    CAS  PubMed  Google Scholar 

  47. Galuska D, Nolte LA, Zierath JR, Wallberg-Henriksson H. Effect of metformin on insulin-stimulated glucose transport in isolated skeletal muscle obtained from patients with NIDDM. Diabetologia. 1994;37:826–32.

    CAS  PubMed  Google Scholar 

  48. Brown AE, Dibnah B, Fisher E, Newton JL, Walker M. Pharmacological activation of AMPK and glucose uptake in cultured human skeletal muscle cells from patients with ME/CFS. Biosci Rep. 2018;38:BSR20180242.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Braun B, Eze P, Stephens BR, Hagobian TA, Sharoff CG, Chipkin SR, et al. Impact of metformin on peak aerobic capacity. Appl Physiol Nutr Metab. 2008;33:61–7.

    CAS  PubMed  Google Scholar 

  50. Das S, Behera SK, Srinivasan A, Xavier AS, Selvarajan S, Kamalanathan S, et al. Effect of metformin on exercise capacity: a meta-analysis. Diabetes Res Clin Pract. 2018;144:270–8.

    CAS  PubMed  Google Scholar 

  51. Hess C, Unger M, Madea B, Stratmann B, Tschoepe D. Range of therapeutic metformin concentrations in clinical blood samples and comparison to a forensic case with death due to lactic acidosis. Forensic Sci Int. 2018;286:106–12.

    CAS  PubMed  Google Scholar 

  52. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, et al. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol. 2009;587:1535–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, et al. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol. 2002;12:1419–23.

    CAS  PubMed  Google Scholar 

  55. Khodabukus A, Baar K. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods. 2012;18:349–57.

    CAS  PubMed  Google Scholar 

  56. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84.

    CAS  PubMed  Google Scholar 

  57. Gollnick PD, Armstrong RB, Saltin B, Saubert CW 4th, Sembrowich WL, Shepherd RE. Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol. 1973;34:107–11.

    CAS  PubMed  Google Scholar 

  58. Anderson RM, Weindruch R. Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab. 2010;21:134–41.

    CAS  PubMed  Google Scholar 

  59. Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol. 2016;5:518–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skelet Muscle. 2015;5:22.

    PubMed  PubMed Central  Google Scholar 

  61. Barbet JP, Thornell LE, Butler-Browne GS. Immunocytochemical characterisation of two generations of fibers during the development of the human quadriceps muscle. Mech Dev. 1991;35:3–11.

    CAS  PubMed  Google Scholar 

  62. Cho M, Webster SG, Blau HM. Evidence for myoblast-extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development. J Cell Biol. 1993;121:795–810.

    CAS  PubMed  Google Scholar 

  63. Draeger A, Weeds AG, Fitzsimons RB. Primary, secondary and tertiary myotubes in developing skeletal muscle: a new approach to the analysis of human myogenesis. J Neurol Sci. 1987;81:19–43.

    CAS  PubMed  Google Scholar 

  64. Sartore S, Gorza L, Schiaffino S. Fetal myosin heavy chains in regenerating muscle. Nature. 1982;298:294–6.

    CAS  PubMed  Google Scholar 

  65. Davis BNJ, Santoso JW, Walker MJ, Oliver CE, Cunningham MM, Boehm CA, et al. Modeling the Effect of TNF-alpha upon Drug-Induced Toxicity in Human. Tissue-Engineered Myobundles. Ann Biomed Eng. 2019;47:1596–610.

    PubMed  Google Scholar 

  66. Koutsounas I, Giaginis C, Theocharis S. Histone deacetylase inhibitors and pancreatic cancer: are there any promising clinical trials? World J Gastroenterol. 2013;19:1173–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu H, Li L, Wang C, He H, Mao K, Ma X, et al. 4-Phenylbutyric acid increases GLUT4 gene expression through suppression of HDAC5 but not endoplasmic reticulum stress. Cell Physiol Biochem. 2014;33:1899–910.

    CAS  PubMed  Google Scholar 

  68. Meraviglia V, Bocchi L, Sacchetto R, Florio MC, Motta BM, Corti C, et al. HDAC inhibition improves the sarcoendoplasmic reticulum Ca2+-ATPase activity in cardiac myocytes. Int J Mol Sci. 2018;19:E419.

    PubMed  Google Scholar 

  69. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A. 2001;98:3820–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Takigawa-Imamura H, Sekine T, Murata M, Takayama K, Nakazawa K, Nakagawa J. Stimulation of glucose uptake in muscle cells by prolonged treatment with scriptide, a histone deacetylase inhibitor. Biosci Biotechnol Biochem. 2003;67:1499–506.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants UH2TR000505 and UG3TR002412 from NCATS and NIAMS, the NIH Common Fund for the Microphysiological Systems Initiative to GAT, as well as an NSF Graduate Research Fellowship to MEK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Truskey.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

Primary human myogenic cells were isolated from surgical waste samples obtained according to a Duke IRB-approved protocol (IRB No. Pro00063964).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13770_2020_242_MOESM1_ESM.docx

Supplementary Table S1. Components of the base LAA media compared to DMEM. Parentheses represent components that are not in the custom base media but are supplemented at the indicated concentration. (DOCX 20 kb)

Supplementary Table S2. Primer sequences used for qRT-PCR. (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondash, M.E., Ananthakumar, A., Khodabukus, A. et al. Glucose Uptake and Insulin Response in Tissue-engineered Human Skeletal Muscle. Tissue Eng Regen Med 17, 801–813 (2020). https://doi.org/10.1007/s13770-020-00242-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-020-00242-y

Keywords

Navigation