Skip to main content
Log in

Potential of nano-phytoremediation of heavy metal contaminated soil: emphasizing the role of mycorrhizal fungi in the amelioration process

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Heavy metal pollution has become a grave environmental problem drawing worldwide attention. Reclamation of polluted land using innovative and ecofriendly way is crucial to restore soil fertility. During the past two decades, various approaches of bio-/phytoremediation are gaining their acceptance to remediate contaminated soil. Recently, the use of reactive nanomaterials for phytoremediation or ‘nano-phytoremediation’ is becoming popular, claiming to improve the phyto-availability of heavy metals and reduce their toxicity through transformation or detoxification. Nanomaterials exhibit distinct properties concerning size, shape, reactivity, and ratio of surface area to volume rendering their potential for a range of applications including remediation of polluted soil environments with heavy metals, chlorinated organic solvents, organochlorine pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. Further, the combination of plants and associated microbes such as rhizospheric bacteria or arbuscular mycorrhizal fungi has the potential to significantly improve the nano-phytoremediation of heavy metal contaminated soil. This review focuses on recent developments on nano-phytoremediation, plant root associated microbes, and their interaction for developing an integrated and efficient nano-phytoremediation strategy for improved soil remediation in general and for soil contaminated with heavy metal. The application of nanomaterials combined with phytoremediation was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All relevant data are included within the MS.

References

  • Afreen VR, Ranganath E (2011) Synthesis of monodispersed silver nanoparticles by Rhizopus stolonifer and its antibacterial activity against MDR strains of Pseudomonas aeruginosa from burnt patients. Int J Environ Sci 1:1582–1592

    CAS  Google Scholar 

  • Ahmed T, Noman M, Ijaz M, Ali S, Rizwan M, Ijaz U, Hameed A, Ahmad U, Wang Y, Sun G, Li B (2021) Current trends and future prospective in nanoremediation of heavy metals contaminated soils: a way forward towards sustainable agriculture. Ecotoxicol Environ Saf 227:112888

    Article  CAS  PubMed  Google Scholar 

  • Alazaiza MY, Albahnasawi A, Ali GA, Bashir MJ, Copty NK, Amr SS (2021) Recent advances of nanoremediation technologies for soil and groundwater remediation: a review. Water 13(16):2186

    Article  CAS  Google Scholar 

  • Albadarin AB, Yang Z, Mangwandi C, Glocheux Y, Walker G, Ahmad MN (2014) Experimental design and batch experiments for optimization of Cr (VI) removal from aqueous solutions by hydrous cerium oxide nanoparticles. Chem Eng Res Des 92:1354–1362

    Article  CAS  Google Scholar 

  • Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Cr (VI) immobilization process in a Cr-spiked soil by zerovalent iron nanoparticles: optimization using response surface methodology. Clean: Soil, Air, Water 39(7):633–640

    CAS  Google Scholar 

  • Alloway BJ (1995) Metals in soils. Blackie academic and professional, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Alsabagh AM, Fathy M, Morsi RE (2015) Preparation and characterization of chitosan/silver nanoparticle/copper nanoparticle/carbon nanotube multifunctional nanocomposite for water treatment: heavy metals removal; kinetics, isotherms and competitive studies. RSC Adv 5:55774–55783

    Article  CAS  ADS  Google Scholar 

  • Alsaeedi AH, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Almohsen M (2017) Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ Sci Pollut Res 24:21917–21928

    Article  CAS  Google Scholar 

  • Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J, Morais MC, Cunha-Queda C (2015) Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag 40:44–52

    Article  CAS  PubMed  Google Scholar 

  • Amde M, Liu JF, Tan ZQ, Bekana D (2017) Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments: a review. Environ Pollut 230:250–267

    Article  CAS  PubMed  Google Scholar 

  • Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U (2012) Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against helicobacter pylori. Int J Mol Sci 13:9923–9941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amna MS, Syed JH, Munis MF, Chaudhary HJ (2015) Phyto-extraction of Nickel by Linum usitatissimum in association with glomus intraradices. Int J Phytorem 17(10):981–987

    Article  CAS  Google Scholar 

  • An B, Zhao D (2012) Immobilization of As (III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. J Hazard Mater 211:332–341

    Article  PubMed  Google Scholar 

  • Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG et al (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35:2223–2229

    Article  CAS  PubMed  Google Scholar 

  • Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Syn React Inorg Metal Org Nano Met Chem 35(1):19–26

    Article  CAS  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382

    Article  CAS  Google Scholar 

  • Arora K, Sharma S, Monti A (2016) Bio-remediation of Pb and Cd polluted soils by switchgrass: a case study in India. Int J Phytorem 18(7):704–709

    Article  CAS  Google Scholar 

  • Arshadi M, Soleymanzadeh M, Salvacion JW, SalimiVahid F (2014) Nanoscale zero-valent iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism. J Colloid Interface Sci 426:241–251

    Article  CAS  PubMed  ADS  Google Scholar 

  • Atakan A, Özkaya HÖ, Erdoğan O (2018) Effects of arbuscular mycorrhizal fungi (AMF) on heavy metal and salt stress. Turk J Agric Food Sci Technol 6(11):1569–1574

    Google Scholar 

  • Babaee Y, Mulligan CN, Rahaman MS (2018) Removal of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. J Chem Technol Biotechnol 93(1):63–71

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266

    Article  CAS  PubMed  Google Scholar 

  • Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT (2016) Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 182:8–20

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Barton LE, Quicksall AN, Maurice PA (2012) Siderophore-mediated dissolution of hematite (α-Fe2O3): effects of nanoparticle size. Geomicrobiol J 29:314–322

    Article  CAS  Google Scholar 

  • Baskaran C, Ratha Bai V (2013) Green synthesis of silver nanoparticles using Coleus forskohlii roots extract and its antimicrobial activity against bacteria and fungus. Int J Drug Dev Res 5(1):114–119

    CAS  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil; key concepts and metal bioavailability. J Environ Qual 34(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M, Kumar ST, Rao MV (2015) Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J Biorem Biodegrad 6:1

    CAS  Google Scholar 

  • Biao L, Tan S, Meng Q, Gao J, Zhang X, Liu Z, Fu Y (2018) Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomater 8(1):53

    Article  Google Scholar 

  • Borišev I, Borišev M, Jović D, Župunski M, Arsenov D, Pajević S, Djordjevic A (2020) Nanotechnology and remediation of agrochemicals. In: Agrochemicals detection, treatment and remediation, vol 1. Butterworth-Heinemann, pp 487–533

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P et al (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral L, Soares CR, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31:1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Cai F, Wu X, Zhang H, Shen X, Zhang M, Chen W et al (2017) Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact 5:101–108

    Article  Google Scholar 

  • Cao J, Feng Y, Lin X, Wang J, Xie X (2016) Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. J Soils Sed 17:841–851

    Article  Google Scholar 

  • Cao J, Feng Y, He S, Lin X (2017) Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Appl Soil Ecol 119:307–316

    Article  Google Scholar 

  • Cao Y, Zhang S, Zhong Q, Wang G, Xu X, Li T, Wang L, Jia Y, Li Y (2018) Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicol Environ Saf 162:464–473

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48

    Article  CAS  PubMed  Google Scholar 

  • Chand S, Singh G, Patra DD (2016) Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-a-vis phytoaccumulation of metals. Int J Phytoremed 18:754–760

    Article  CAS  Google Scholar 

  • Chandra V, Kim KS (2011) Highly selective adsorption of Hg 2+ by a polypyrrole–reduced graphene oxide composite. Chem Commun 47:3942–3944

    Article  CAS  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Oliver DP (1996) Sources, potential adverse effects and remediation of agricultural soil contaminants. In: Naidu R (ed) Contaminants and the soil environments in the Australia Pacific Region. Kluwer Academic Publishers, Dordrecht, pp 323–359

    Chapter  Google Scholar 

  • Chang C, Lian F, Zhu L (2011) Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environ Pollut 159:2507–2514

    Article  CAS  PubMed  Google Scholar 

  • Chellamuthu P, Tran F, Silva KPT, Chavez MS, El-Naggar MY, Boedicker JQ (2019) Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials. Microb Biotechnol 12(1):161–172

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Zhang S, Wang Q, Feng X, Zhang S, Sun Y, Wang F (2021) Contribution of nano-zero-valent iron and arbuscular mycorrhizal fungi to phytoremediation of heavy metal-contaminated soil. Nanomaterials 11(5):1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    Article  CAS  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106(5):791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicatelli A, Torrigiani P, Todeschini V, Biondi S, Castiglione S, Lingua G (2014) Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects. Forest 7:333–341

    Google Scholar 

  • Curl EA, Truelove B (2012) The rhizosphere. Springer, Berlin

    Google Scholar 

  • Das S, Sen B, Debnath N (2015) Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res 22:18333–18344

    Article  Google Scholar 

  • Das S, Chakraborty J, Chatterjee S, Kumar H (2018) Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environ Sci Nano 5(12):2784–2808

    Article  CAS  Google Scholar 

  • Das C, Sen S, Singh T, Ghosh T, Paul SS, Kim TW, Jeon S, Maiti DK, Im J, Biswas G (2020) Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials 10(8):1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debeljak M, van Elteren JT, Špruk A, Izmer A, Vanhaecke F, Vogel-Mikuš K (2018) The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize. Chemosphere 212:1076–1084

    Article  CAS  PubMed  ADS  Google Scholar 

  • Della Puppa L, Komárek M, Bordas F, Bollinger JC, Joussein E (2013) Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J Colloid Interface Sci 399:99–106

    Article  CAS  PubMed  ADS  Google Scholar 

  • Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N (2013) Biosynthesis of silver nanoparticle from Tricoderma species. Indian J Exp Biol 51:543–547

    CAS  PubMed  Google Scholar 

  • Diaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Indus Biotechnol 8(6):344–357

    Article  CAS  Google Scholar 

  • Ding L, Li J, Liu W, Zuo Q, Liang SX (2017) Influence of nano-hydroxyapatite on the metal bioavailability, plant metal accumulation and root exudates of ryegrass for phytoremediation in lead-polluted soil. Int J Environ Res Public Health 14:532

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong D, Nelson YM, Lion LW, Shuler ML, Ghiorse WC (2000) Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides. Water Res 34:427–436

    Article  CAS  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37(1):101–106

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):1–7

    Article  Google Scholar 

  • Essington ME (2004) Soil and water chemistry: an integrative approach. CRC Press, Boca Raton, pp 534. ISBN: 0-8493-1258-2

  • Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M (2015) Residual impact of aged nZVI on heavy metal-polluted soils. Sci Total Environ 535:79–84

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B 103:523–529

    Article  CAS  Google Scholar 

  • Fandeur D, Juillot F, Morin G, Olivi L, Cognigni A, Webb SM, Ambrosi JP, Fritsch E, Guyot F, Brown GE Jr (2009) XANES evidence for oxidation of Cr (III) to Cr (VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environ Sci Technol 43:7384–7390

    Article  CAS  PubMed  ADS  Google Scholar 

  • Faraji J, Sepehri A (2018) Titanium dioxide nanoparticles and sodium nitroprusside alleviate the adverse effects of cadmium stress on germination and seedling growth of wheat (Triticum aestivum L.). Univ Sci 23:61

    Article  CAS  Google Scholar 

  • Farghali AA, Bahgat M, Allah AE, Khedr MH (2013) Adsorption of Pb (II) ions from aqueous solutions using copper oxide nanostructures. Beni-Seuf Univ J Appl Sci 2:61–71

    Google Scholar 

  • Fato FP, Li DW, Zhao LJ, Qiu K, Long YT (2019) Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega 244(4):7543–7549

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

    Article  CAS  Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    Article  CAS  PubMed  ADS  Google Scholar 

  • Folli-Pereira MS, Meira-Haddad LS, Bazzolli DMS, Kasuya MCM (2012) Arbuscular mycorrhiza and plant tolerance to stress. R Bras Ci Solo 36:1663–1679

    Article  CAS  Google Scholar 

  • Fresnais J, Yan M, Courtois J, Bostelmann T, Bée A, Berret JF (2013) Poly (acrylic acid)-coated iron oxide nanoparticles: quantitative evaluation of the coating properties and applications for the removal of a pollutant dye. J Colloid Interface Sci 395:24–30

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  ADS  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2012) Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses. J Plant Growth Regul 31:292–308

    Article  CAS  Google Scholar 

  • Gatahi DM, Wanyika HN, Kavoo A, Kihurani A, Ateka EM (2016) Enhancement of bacterial wilt resistance and rhizosphere health in tomato using bionanocomposites. Int J Hortic Sci Technol 3(2):129–144

    CAS  Google Scholar 

  • Gautam M, Agrawal M (2017) Phytoremediation of metals using vetiver (Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil. J Geochem Explor 182:218–227

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140

    Article  CAS  Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8:471–482

    Article  CAS  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Kale S, Pardesi K, Shinde V, Bellare J, Dhavale DD (2012) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10:17

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Pinilla P, Lobo MC (2014) Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. J Environ Sci Health A Toxic Hazard Subst Environ Eng 49(12):1361–1369

    Article  Google Scholar 

  • Gil-Diaz M, Diez-Pascual S, Gonzalez A, Alonso J, Rodriguez-Valdes E, Gallego JR et al (2016) A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere 149:137–145

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gomez-Garay A, Pintos B, Manzanera JA, Lobo C, Villalobos N, Martín L (2014) Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea in vitro plantlets. Biol Trace Elem Res 161:143–150

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Liu Y, Xiong Z, Zhao D (2014) Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: Reaction mechanisms and effects of stabilizer and water chemistry. Environ Sci Technol 48:3986–3994

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130(3):317–323

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan K, Ramesh C, Ragunathan V, Thamilselvan M (2012) Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Dig J Nanomater Bios 7(2):833–839

    Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis). Geitler J Mater Sci 43:5115–5122

    Article  CAS  ADS  Google Scholar 

  • Guan H, Bestland E, Zhu C, Zhu H, Albertsdottir D, Hutson J, Simmons CT, Ginic-Markovic M, Tao X, Ellis AV (2010) Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. J Hazard Mater 183:616–621

    Article  CAS  PubMed  Google Scholar 

  • Gubin SP, Koksharov YA, Khomutov G, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489

    Article  CAS  ADS  Google Scholar 

  • Gunjan B, Zaidi MGH, Sandeep A (2014) Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J Plant Biochem Physiol 2:1–6

    Google Scholar 

  • Gupta K, Ghosh UC (2009) Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. J Hazard Mater 161:884–892

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Maity A, Ghosh UC (2010) Manganese associated nanoparticles agglomerate of iron (III) oxide: synthesis, characterization and arsenic (III) sorption behavior with mechanism. J Hazard Mater 184:832–842

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloid Sur b: Biointerfaces 74(1):328–335

    Article  CAS  Google Scholar 

  • Hansel CM, Fendorf S, Sutton S, Newville M (2002) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–3868

    Article  ADS  Google Scholar 

  • He M, Shi H, Zhao X, Yu Y, Qu B (2013) Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Proc Environ Sci 18:657–665

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63

    Article  Google Scholar 

  • Hristovski KD, Westerhoff PK, Möller T, Sylvester P (2009) Effect of synthesis conditions on nano-iron (hydr) oxide impregnated granulated activated carbon. Chem Eng J 146(2):237–243

    Article  CAS  Google Scholar 

  • Huang ZH, Zheng X, Lv W, Wang M, Yang QH, Kang F (2011) Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Xue W, Zeng G, Wan J, Chen G, Huang C et al (2016) Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: impact on enzyme activities and microbial community diversity. Water Res 106:15–25

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Qin X, Peng Z, Liu Y, Gong X, Zeng G et al (2018) Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol Environ Saf 153:229–237

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZU, Qayyum MF, Wang H et al (2019) Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf 173:156–164

    Article  CAS  PubMed  Google Scholar 

  • Husseiny MI, Abd El-Aziz M, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochem Acta A Mol Biomol Spectrosc 67(3–4):1003–1006

    Article  CAS  ADS  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. International scholarly research notices. Article ID 359316

  • Iravani S, Varma RS (2020) Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustain Chem Eng 8(14):5395–5409

    Article  CAS  Google Scholar 

  • Janoušková M, Pavlíková D, Vosátka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65(11):1959–1965

    Article  PubMed  ADS  Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. Chem Bio Eng Rev 3:55–67

    Google Scholar 

  • Jha AJ, Prasad K (2011) Green fruit of chili (Capsicum annum L.) synthesizes nano silver. Digest J Nanomater Biostruct 6:1717–1723

    Google Scholar 

  • Jiang W, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O’Shea K (2013) Chromium (VI) removal by maghemite nanoparticles. Chem Eng J 222:527–533

    Article  CAS  Google Scholar 

  • Jiang D, Zeng G, Huang D, Chen M, Zhang C, Huang C et al (2018) Remediation of contaminated ssoils by enhanced nanoscale zero valent iron. Environ Res 163:217–227

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Liu W, Xl Li, Sg S, Sx L, Liu C et al (2016) Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol Eng 95:25–29

    Article  Google Scholar 

  • Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J, Southam G, Magarvey NA (2013) Gold biomineralization by a metallophore from a gold-associated microbe. Nat Chem Biol 9:241–243

    Article  CAS  PubMed  Google Scholar 

  • Joseph S, Anawar HM, Storer P, Blackwell P, Chee CH, Yun LI, Munroe P, Donne S, Horvat J, Jianli WA, Solaiman ZM (2015) Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 25(5):749–760

    Article  CAS  Google Scholar 

  • Joshi MK, Pant HR, Liao N, Kim JH, Kim HJ, Park CH, Kim CS (2015) In-situ deposition of silver−iron oxide nanoparticles on the surface of fly ash for water purification. J Colloid Interface Sci 453:159–168

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanchana A, Agarwal I, Sunkar S, Nellore J, Namasivayam K (2011) Biogenic silver nanoparticles from Spinacia oleracea and Lactuca sativa and their potential antimicrobial activity. Digest J Nanomater Biostruct 6:741–1750

    Google Scholar 

  • Kangwankraiphaisan T, Suntornvongsagul K, Sihanonth P, Klysubun W, Gadd GM (2013) Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment. Bio Metals 26:489–505

    CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan AG (2020) Promises and potential of in situ nano-phytoremediation strategy to mycorrhizo-remediate heavy metal contaminated soils using non-food bioenergy crops (Vetiver zizinoides & Cannabis sativa). Int J Phytorem 22(9):900–915

    Article  CAS  Google Scholar 

  • Khan SS, Mukherjee A, Chandrasekaran N (2011) Impact of exopolysaccharides on the stability of silver nanoparticles in water. Water Res 45:5184–5190

    Article  CAS  PubMed  Google Scholar 

  • Khan ST, Ahmad J, Ahamed M, Jousset A (2018) Sub-lethal doses of widespread nanoparticles promote antifungal activity in Pseudomonas protegens CHA0. Sci Total Environ 627:658–662

    Article  CAS  PubMed  ADS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  • Kim Y, Joo H, Her N, Yoon Y, Lee CH, Yoon J (2013) Self-rotating photocatalytic system for aqueous Cr (VI) reduction on TiO2 nanotube/Ti mesh substrate. Chem Eng J 229:66–71

    Article  CAS  Google Scholar 

  • Kiran GS, Selvin J, Manilal A, Sujith S (2011) Biosurfactants as green stabilizers for the biological synthesis of nanoparticles. Crit Rev Biotechnol 31(4):354–364

    Article  CAS  PubMed  Google Scholar 

  • Kitching M, Choudhary P, Inguva S, Guo Y, Ramani M, Das SK, Marsili E (2016) Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzyme Microbial Technol 95:76–84

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kocaoba S, Orhan Y, Akyüz T (2007) Kinetics and equilibrium studies of heavy metal ions removalby use of natural zeolite. Desalination 214:1–10

    Article  CAS  Google Scholar 

  • Komárek M, Koretsky CM, Stephen KJ, Alessi DS, Chrastný V (2015) Competitive adsorption of Cd (II), Cr(VI), and Pb(II) onto nanomaghemite: a spectroscopic and modeling approach. Environ Sci Technol 49:12851–12859

    Article  PubMed  ADS  Google Scholar 

  • Kumar KS, Dayananda S, Subramanyam C (2005) Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa. FEMS Microbiol Lett 242:45–50

    Article  CAS  PubMed  Google Scholar 

  • Kumari MM, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta Part A 137:185–192

    Article  ADS  Google Scholar 

  • Kushwaha A, Singh VK, Bhartariya J, Singh P, Yasmeen K (2015) Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. Eur J Exp Biol 5(1):65–70

    Google Scholar 

  • Laumann S, Micić V, Lowry GV, Hofmann T (2013) Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ Pollut 179:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 21:69–79

    Article  Google Scholar 

  • Li Z, Huang J (2014) Effects of nanoparticle hydroxyapatite on growth and antioxidant system in pakchoi (Brassica chinensis L.) from cadmium-contaminated soil. J Nanomater 1–7

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2011) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li Q, Ma X, Tian B, Li T, Yu J, Dai S, Weng Y, Hua Y (2016) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomed 11:5931–5944

    Article  CAS  Google Scholar 

  • Li Y, Zeng J, Wang S, Lin Q, Ruan D, Chi H, Zheng M, Chao Y, Qiu R, Yang Y (2020) Effects of cadmium-resistant plant growth-promoting rhizobacteria and Funneliformis mosseae on the cadmium tolerance of tomato (Lycopersicon esculentum L.). Int J Phytoremed 22(5):451–458

    Article  CAS  Google Scholar 

  • Liang SX, Jin Y, Liu W, Li X, Shen SG, Ding L (2017) Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: results of a one-year field-scale experiment. J Environ Manag 190:170–175

    Article  CAS  Google Scholar 

  • Lin S, Lu D, Liu Z (2012) Removal of arsenic contaminants with magnetic c-Fe2O3 nanoparticles. Chem Eng J 211–212:46–52

    Article  Google Scholar 

  • Lin D, Story SD, Walker SL, Huang Q, Cai P (2016) Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles. Water Res 104:381–388

    Article  CAS  PubMed  Google Scholar 

  • Litter MI, Cortina JL, Fiúza AM, Futuro A, Tsakiroglou C (2014) In-situ technologies for groundwater treatment: the case of arsenic. In: Bundschuh J, Holländer HM, Ma LQ (eds) In-situ remediation of arsenic-contaminated sites. CRC Press, London

    Google Scholar 

  • López-Téllez G, Barrera-Díaz C, Roa-Morales B-H, G, Bilyeu B, (2011) Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J 173:480–485

    Article  Google Scholar 

  • Lopez-Luna J, Silva-Silva MJ, Martinez-Vargas S, Mijangos-Ricardez OF, Gonzalez-Chavez MC, Solıs-Domınguez FA et al (2016) Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ 565:941–950

    Article  CAS  PubMed  ADS  Google Scholar 

  • Loryuenyong V, Jarunsak N, Chuangchai T, Buasri A (2014) The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles. Adv Mater Sci Eng 2014:1–18

    Article  Google Scholar 

  • Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    Article  CAS  ADS  Google Scholar 

  • Ma X, Wang C (2010) Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27(11):989–992

    Article  CAS  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB et al (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud AED, Al-Qahtani KM, Alflaij SO, Al-Qahtani SF, Alsamhan FA (2021) Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci Rep 11(1):1–3

    Article  Google Scholar 

  • Mallard I, Städe LW, Ruellan S, Jacobsen PAL, Larsen KL, Fourmentin S (2015) Synthesis, characterization and sorption capacities toward organic pollutants of new β-cyclodextrin modified zeolite derivatives. Colloids Surf A 482:50–57

    Article  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  CAS  PubMed  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil− root interface. Environ Sci Technol 42(5):1766–1772

    Article  CAS  PubMed  ADS  Google Scholar 

  • Manyangadze M, Chikuruwo NHM, Chakra CS, Narsaiah TB, Radhakumari M, Danha G (2020) Enhancing adsorption capacity of nano-adsorbents via surface modification: a review. South Afr J Chem Eng 31(1):25–32

    Article  Google Scholar 

  • Martínez-Fernández D, Bingöl D, Komárek M (2014) Trace elements and nutrients adsorption onto nano-maghemite in a contaminated-soil solution: a geochemical/statistical approach. J Hazard Mater 276:271–277

    Article  PubMed  Google Scholar 

  • Martínez-Fernández D, Vítková M, Michálková Z, Komárek M (2017) Engineered nanomaterials for phytoremediation of metal/metalloid-contaminated soils: implications for plant physiology. In: Phytoremediation. Springer, Cham, pp 369–403

  • Matos MP, Correia AAS, Rasteiro MG (2017) Application of carbon nanotubes to immobilize heavy metals in contaminated soils. J Nanopart Res 19(4):1–11

    Article  CAS  Google Scholar 

  • Mehr MR, Shakeri A, Amjadian K, Poshtegal MK, Sharifi R (2021) Bioavailability, distribution and health risk assessment of arsenic and heavy metals (HMs) in agricultural soils of Kermanshah Province, west of Iran. J Environ Health Sci Eng 19:1–14

    Google Scholar 

  • Michálková Z, Komárek M, Šillerová H, Della Puppa L, Joussein E, Bordas F, Vaněk A, Vaněk O, Ettler V (2014) Evaluating the potential of three Fe-and Mn-(nano) oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J Environ Manag 46:226–234

    Article  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Chatterjee S, Gupta DK (2021) Plant-microbe interaction: relevance for phytoremediation of heavy metals. In: Hasanuzzaman M, Vara Prasad MN (eds) Handbook of bioremediation. Academic Press, New York, pp 263–275

    Chapter  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Moll J, Gogos A, Bucheli TD, Widmer F, van der Heijden MG (2016) Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol 14(1):1–8

    Article  Google Scholar 

  • Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, Varga T, Kónya Z, Tóth-Szeles E, Szűcs R, Lagzi I (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:3943

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Adsorption of Cu (II), Co (II), and Ni (II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 177:962–970

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103–075109

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mukhopadhyay R, Sarkar B, Khan E, Alessi DS, Biswas JK, Manjaiah KM, Eguchi M, Wu KC, Yamauchi Y, Ok YS (2021) Nanomaterials for sustainable remediation of chemical contaminants in water and soil. Crit Rev Environ Sci Technol 52:1–50

    Google Scholar 

  • Mustafa G, Tahir H, Sultan M, Akhtar N (2013) Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes. Afr J Biotechnol 12:6650–6660

    Article  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5(4):452–456

    Article  CAS  Google Scholar 

  • Nassar NN (2010) Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ndikau M, Noah NM, Andala DM, Masika E (2017) Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract. Int J Anal Chem 2017:1–9

    Article  Google Scholar 

  • Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34(13):2749–2755

    Article  CAS  ADS  Google Scholar 

  • Ngah WW, Fatinathan S (2010) Pb (II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies. J Environ Sci 22:338–346

    Article  CAS  Google Scholar 

  • Nikolić M, Stevović S (2015) Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban for Urban Green 14:782–789

    Article  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  ADS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  PubMed  Google Scholar 

  • Oliveira LC, Petkowicz DI, Smaniotto A, Pergher SB (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38:3699–3704

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly SE, Hochella MF (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67:4471–4487

    Article  ADS  Google Scholar 

  • Orłowska E, Godzik B, Turnau K (2012) Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environ Pollut 168:121–130

    Article  PubMed  Google Scholar 

  • Paliwal V, Puranik S, Purohit HJ (2012) Integrated perspective for effective bioremediation. Appl Biochem Biotechnol 166(4):903–924

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist NGM, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 10:1038–10146

    Google Scholar 

  • Panichikkal J, Thomas R, John JC, Radhakrishnan EK (2019) Biogenic gold nanoparticle supplementation to plant beneficial Pseudomonas monteilii was found to enhance its plant probiotic effect. Curr Microbiol 76:1–7

    Article  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6:411–414

    Article  CAS  Google Scholar 

  • Parvin F, Rikta SY, Tareq SM (2019) Application of nanomaterials for the removal of heavy metal from wastewater. Nanotechnology in water and wastewater treatment. Elsevier, Amsterdam, pp 137–157

    Chapter  Google Scholar 

  • Parsons JG, Lopez ML, Peralta-Videa JR, Gardea-Torresdey JL (2009) Determination of arsenic (III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchem J 91(1):100–106

    Article  CAS  Google Scholar 

  • Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20:1041–1049

    Article  CAS  Google Scholar 

  • Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59:399–403

    Article  CAS  Google Scholar 

  • Pillai HP, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7:734–744

    Article  CAS  Google Scholar 

  • Poirier I, Hammann P, Kuhn L, Bertrand M (2013) Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: a proteome analysis. Aquatic Toxicol 128:215–232

    Article  Google Scholar 

  • Pol R, Guerrero M, García-Lecina E, Altube A, Rossinyol E, Garroni S, Baró MD, Pons J, Sort J, Pellicer E (2016) Ni-, Pt-and (Ni/Pt)-doped TiO2 nanophotocatalysts: a smart approach for sustainable degradation of Rhodamine B dye. Appl Catal B 181:270–278

    Article  CAS  Google Scholar 

  • Pugazhendhi S, Sathya P, Palanisamy PK, Gopalakrishnan R (2016) Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior. J Photochem Photobiol B 159:155–160

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Xu Z (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surf A 251:183–190

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Singh A, Ahmad A, Sastry M (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22:736–741

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Bonde S, Golinska P, Trzcińska-Wencel J, Gade A, Abd-Elsalam K, Shende S, Gaikwad S, Ingle A (2021) Fusarium as a novel fungus for the synthesis of nanoparticles: mechanism and applications. J Fungi 7(2):139

    Article  CAS  Google Scholar 

  • Ramanathan R, Field MR, O’Mullane AP, Smooker PM, Bhargava SK, Bansal V (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5:2300–2306

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rangarajan V, Dhanarajan G, Dey P, Chattopadhya D, Sen R (2018) Bacillus lipopeptides: powerful capping and dispersing agents of silver nanoparticles. Appl Nanosci 8(7):1809–1821

    Article  CAS  ADS  Google Scholar 

  • Rasouli-Sadaghiani MH, Barin M, Khodaverdiloo H, Siavash Moghaddam S, Damalas CA, Kazemalilou S (2019) Arbuscular mycorrhizal fungi and rhizobacteria promote growth of Russian knapweed (Acroptilon repens L.) in a Cd-contaminated soil. J Plant Growth Regul 38:113–121

    Article  CAS  Google Scholar 

  • Recillas S, García A, González E, Casals E, Puntes V, Sánchez A et al (2011) Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water. Desalination 277:213–220

    Article  CAS  Google Scholar 

  • Reza R, Singh G (2010) Heavy metal contamination and its indexing approach for river water. Int J Environ Sci Technol 7:785–792

    Article  CAS  Google Scholar 

  • Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanopart

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Roy A, Sharma A, Yadav S, Jule LT, Krishnaraj R (2021) Nanomaterials for remediation of environmental pollutants. Bioinorg Chem Applic 1764647.

  • Rupiasih NN, Aher A, Gosavi S, Vidyasagar PB (2015) Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. In: Recent Trend. Physics in Material Science and Technology. Springer, Singapore, pp 1–10

  • Sadegh H, Ali GA, Gupta VK, Makhlouf ASH, Shahryari-Ghoshekandi R, Nadagouda MN et al (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7:1–14

    Article  CAS  Google Scholar 

  • Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Sarkar S, Enamala MK, Chavali M, Sarma GS, Murthy MK, Kadier A, Veeramuthu A, Chandrasekhar K (2021) Nanophytoremediation: an overview of novel and sustainable biological advancement. In: Soil contamination-threats and sustainable solutions

  • Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 15:33–40

    Article  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 25:162–170

    Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  PubMed  Google Scholar 

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10:257–278

    Article  CAS  PubMed  Google Scholar 

  • Setyaningsih L, Setiadi Y, Budi SW, Sopandie D (2017) Lead accumulation by jabon seedling (Anthocephalus cadamba) on tailing media with application of compost and arbuscular mycorrhizal fungi. In: IOP conference series: earth and environmental science, vol 58, No 1. IOP Publishing, p 012053

  • Shabani L, Sabzalian MR, Mostafavi pour S (2016) Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:67–76

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Proc Biochem 42(5):919–923

    Article  CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(5):496–502

    Article  CAS  PubMed  ADS  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fuorescens. Int J Curr Microbiol App Sci 3(9):374–383

    Google Scholar 

  • Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. Nanotechnol Plant Sci 19–35

  • Siddiqui MN, Mostofa MG, Akter MM, Srivastava AK, Md AS, Hasan MS, Tran LSP (2017) Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere 187:385–394

    Article  CAS  PubMed  ADS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7(2):156–164

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manage 170:88–96

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Thanh DN, Ulbrich P, Strnadová N, Štěpánek F (2010) Synthesis, characterization and study of arsenate adsorption from aqueous solution by α-and δ-phase manganese dioxide nanoadsorbents. J Solid State Chem 183:2979–3298

    Article  CAS  ADS  Google Scholar 

  • Singh R, Misra V, Singh RP (2012) Removal of hexavalent chromium from contaminated ground water using zerovalent iron nanoparticles. Environ Monit Assess 184:3643–3651

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Gautam RK, Kumar R, Shukla BK, Shankar V, Krishna V (2014) Citric acid coated magnetic nanoparticles: synthesis, characterization and application in removal of Cd (II) ions from aqueous solution. J Water Process Eng 4:233–241

    Article  Google Scholar 

  • Sirajunnisa AR, Surendhiran D (2014) Nanosilver fabrication mediated by exopolysaccharides from Pseudomonas fluorescens and its biological activities. Magnesium 5:6

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbioses. Academic Press, London

    Google Scholar 

  • Souri Z, Karimi N, Sarmadi M, Rostami E (2017) Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv., under As stress. IET Nanobiotechnol 11(6):650–655

    Article  PubMed Central  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2014) Biosynthesis of SnO2 nanoparticles using bacterium Erwinia herbicola and their photocatalytic activity for degradation of dyes. Ind Eng Chem Res 53(36):13971–13979

    Article  CAS  Google Scholar 

  • Srivastav A, Yadav KK, Yadav S, Gupta N, Singh JK, Katiyar R, Kumar V (2018) Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects. Phytorem. Springer, Cham, pp 383–401

    Chapter  Google Scholar 

  • Su H, Fang Z, Tsang PE, Fang J, Zhao D (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100

    Article  CAS  PubMed  Google Scholar 

  • Sujatha S, Tamilselvi S, Subha K, Panneerselvam A (2013) Studies on biosynthesis of silver nanoparticles using mushroom and its antibacterial activities. Int J Curr Microbiol App Sci 2:605–614

    Google Scholar 

  • Subramaniam MN, Goh PS, Lau WJ, Ismail AF (2019) The roles of nanomaterials in conventional and emerging technologies for heavy metal removal: a state-of-the-art review. Nanomaterials 9(4):625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li Y, Xu Y, Liang X, Wang L (2015) In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl Clay Sci 105106:200–206

    Article  Google Scholar 

  • Sun RJ, Chen JH, Fan TT, Zhou DM, Wang YJ (2018) Effect of nanoparticle hydroxyapatite on the immobilization of Cu and Zn in polluted soil. Environ Sci Pollut Res 25(1):73–80

    Article  CAS  Google Scholar 

  • Sunkar S, Nachiyar CV (2012) Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: a novel source in the benign synthesis. Global J Med Res 12(2):43–50

    Google Scholar 

  • Surya S, Kumar GD, Rajakumar R (2016) Green synthesis of silver nanoparticles from flower extract of Hibiscus rosa-sinensis and its antibacterial activity. Int J Innov Res Sci Eng Technol 5(4):5242–5247

    Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Raliya R (2013) Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanopart 1–4

  • Tewari BB (2019) Critical reviews on engineered nanoparticles in environmental remediation. Curr J Appl Sci Technol 4:1–21

    Article  Google Scholar 

  • Tian H, Kah M, Kariman K (2019) Are nanoparticles a threat to mycorrhizal and rhizobial symbioses? A critical review. Front Microbiol 10:1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8(1):617

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Tong M, Yuan S, Long H, Zheng M, Wang L, Chen J (2011) Reduction of nitrobenzene in groundwater by iron nanoparticles immobilized in PEG/nylon membrane. J Contam Hydrol 122:16–25

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015) Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol Environ Saf 113:133–144

    Article  CAS  PubMed  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tuutijarvi T, Vahala R, Sillanpaa M, Chen G (2012) Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Environ Technol 33(16):1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trend Microbiol 25:280–292

    Article  CAS  Google Scholar 

  • Vágó A, Szakacs G, Sáfrán G, Horvath R, Pécz B, Lagzi I (2016) One-step green synthesis of gold nanoparticles by mesophilic filamentous fungi. Chem Phy Lett 645:1–4

    Article  ADS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J 1(1):65–79

    Article  CAS  Google Scholar 

  • Vítková M, Komárek M, Tejnecký V, Šillerová H (2015) Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. J Hazard Mater 293:7–14

    Article  PubMed  Google Scholar 

  • Viıtkova M, Puschenreiter M, Komarek M (2018) Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 200:217–226

    Article  ADS  Google Scholar 

  • Villalobos M, Escobar-Quiroz IN, Salazar-Camacho C (2014) The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As (V) and oxidation of As (III). Geochim Cosmochim Acta 125:564–581

    Article  CAS  ADS  Google Scholar 

  • Vinuth M, Naik HSB, Manjanna J (2015) Remediation of hexavalent chromium from aqueous solution using clay mineral Fe (II)–montmorillonite: encompassing anion exclusion impact. Appl Surf Sci 357:1244–1250

    Article  CAS  ADS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytoremediat 9:345–353

    Article  Google Scholar 

  • Wang Y, Fang Z, Kang Y, Tsang EP (2014) Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J Hazard Mater 275:230–237

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yue L, Dhankher OP, Xing B (2020) Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ Int 142:105831

    Article  CAS  PubMed  Google Scholar 

  • Watanabe JI, Tani Y, Chang J, Miyata N, Naitou H, Seyama H (2013) As (III) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2. Chem Geol 347:227–232

    Article  CAS  ADS  Google Scholar 

  • Watts-Williams SJ, Patti AF, Cavagnaro TR (2013) Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil 371:299–312

    Article  CAS  Google Scholar 

  • Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Wang S, Zuo Q, Liang S, Shen S, Zhao C (2016) Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil. Environ Sci Process Impacts 18(6):760–767

    Article  CAS  PubMed  Google Scholar 

  • Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5(4):245–325

    CAS  Google Scholar 

  • Wen L, Lin Z, Gu P, Zhou J, Yao B, Chen G, Fu J (2009) Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res 11(2):279–288

    Article  CAS  Google Scholar 

  • Worms IAM, Boltzman J, Garcia M, Slaveykova VI (2012) Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ Pollut 167:27–33

    Article  CAS  PubMed  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wu FY, Ye ZH, Wong MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76(9):1258–1264

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wu SL, Zhang X, Chen BD, Wu ZX, Li T, Hu YJ, Sun YQ, Wang YS (2016) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environ Exp Bot 122:10–18

    Article  CAS  Google Scholar 

  • Wu S, Vosatka M, Vogel-Mikus K, Kavcic A, Kelemen M, Sepec L, Pelicon P, Skala R, Valero Powter AR, Teodoro M et al (2018) Nano zero-valent iron mediated metal(loid) uptake and translocation by arbuscular mycorrhizal symbioses. Environ Sci Technol 52:7640–7651

    Article  CAS  PubMed  ADS  Google Scholar 

  • Xiao Y, Huang Q, Zheng Z, Guan H, Liu S (2017) Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Inter J Biol Macromol 99:483–491

    Article  CAS  Google Scholar 

  • Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43:5171–5179

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wu Y, Xiao Z, Ban Y, Belvett N (2019) Positive effects of Funneliformis mosseae inoculation on reed seedlings under water and TiO2 nanoparticles stresses. World J Microbiol Biotechnol 35:1–3

    Article  Google Scholar 

  • Yadav A, Mahendra R (2015) Phytosynthesis of metal nanoparticles. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences. Springer, Switzerland

    Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8(2):740–757

    CAS  Google Scholar 

  • Yang H, Lin YW, Rajeshwar K (1999) Homogeneous and heterogeneous photocatalytic reactions involving As (III) and As (V) species in aqueous media. J Photochem Photobiol 123:137–143

    Article  CAS  Google Scholar 

  • Yang Y, Liang Y, Han X, Chiu TY, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6(1):20469

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yang W, Cheng P, Adams CA, Zhang S, Sun Y, Yu H, Wang F (2021) Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biol Biochem 155:108179

    Article  CAS  Google Scholar 

  • Yu G, Wang X, Liu J, Jiang P, You S, Ding N, Guo Q, Lin F (2021) Applications of nanomaterials for heavy metal removal from water and soil: a review. Sustainability 13(2):713

    Article  CAS  Google Scholar 

  • Zand AD, Mikaeili Tabrizi A, Vaezi Heir A (2020) Application of titanium dioxide nanoparticles to promote phytoremediation of Cd-polluted soil: contribution of PGPR inoculation. Bioremediation J 24(2–3):171–189

    Article  CAS  Google Scholar 

  • Zhan FD, Li B, Jiang M, Yue XR, He YM, Xia YS, Wang YS (2018) Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res 25:24338–24347

    Article  CAS  Google Scholar 

  • Zhang H, Zhang Y (2020) Effects of iron oxide nanoparticles on Fe and heavy metal accumulation in castor (Ricinus communis L.) plants and the soil aggregate. Ecotoxicol Environ Saf 200:110728

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X, He N, Zheng S (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol Int Res Proc Environ Clean Technol 80(3):285–290

    CAS  Google Scholar 

  • Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L (2009) Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ Pollut 158(2):514–519

    Article  PubMed  Google Scholar 

  • Zhang MY, Wang Y, Zhao DY, Pan G (2010) Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin Sci Bull 55(4–5):365–372

    Article  CAS  Google Scholar 

  • Zhang R, Zhang N, Fang Z (2018a) In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Water Sci Technol 77:1622–1631

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hu J, Bai J, Wang J, Yin R, Wang J, Lin X (2018b) Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Sci Total Environ 628:282–290

    Article  PubMed  ADS  Google Scholar 

  • Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 18:1–19

    CAS  Google Scholar 

  • Zhou D, Kim DG, Ko SO (2015) Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1. J Indus Eng Chem 24:132–139

    Article  CAS  Google Scholar 

  • Zheng L, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiao-qing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  CAS  Google Scholar 

  • Zhu Y, Xu F, Liu Q, Chen M, Liu X, Wang Y, Sun Y, Zhang L (2019) Nanomaterials and plants: positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Sci Total Environ 662:414–421

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zielonka A, Klimek-Ochab M (2017) Fungal synthesis of size-defined nanoparticles. Adv Nat Sci Nanosci Nanotechnol 8:043001

    Article  ADS  Google Scholar 

Download references

Funding

No specific funding was received to conduct the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mitra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests.

Additional information

Editorial responsibility: Jing Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, A., Kataki, S., Chatterjee, S. et al. Potential of nano-phytoremediation of heavy metal contaminated soil: emphasizing the role of mycorrhizal fungi in the amelioration process. Int. J. Environ. Sci. Technol. 21, 6405–6428 (2024). https://doi.org/10.1007/s13762-024-05466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-024-05466-2

Keywords

Navigation