Skip to main content

Advertisement

Log in

Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

As a ubiquitous symbiotic fungus, the responses and the feedback of arbuscular mycorrhizal (AM) fungi to engineered nanoparticles (ENPs) remain unknown as well as the underlying mechanisms. The objective of this investigation was to figure out the influence of iron oxide magnetic nanoparticles (Fe3O4NPs) on AM fungal community, the underlying mechanisms, and the possible consequences of AM fungi-plant involved soil ecosystem.

Materials and methods

A greenhouse pot experiment was established to investigate the responses of maize (Zea may L.) growth and AM fungal community to differential application levels (0.1, 1.0, and 10.0 mg kg−1) of iron oxide magnetic nanoparticles (Fe3O4NPs) or microscale magnetic iron oxide (bulk Fe3O4). The AM fungal community composition and diversity were analyzed by high-throughput sequencing. The plant biomass, phosphorus (P) acquisitions, Fe concentration in plant shoots, catalase (CAT) activity, root mycorrhizal colonization rate, and glomalin-related soil protein (GRSP) contents were determined. In the meantime, the soil P supply efficiency, soil pH, and dissolved organic carbon contents (DOC) were analyzed as well as soil-soluble Fe content.

Results and discussion

Fe3O4NPs at 10.0 mg kg−1 (the high concentration) could be toxic to AM fungi by directly decreasing their diversity significantly (p < 0.05) and shifting their community structure, compared to the control and bulk Fe3O4. The similar toxicity was observed for host plant by the significant increases (p < 0.05) in Fe concentration in plant shoots and CAT activity. Consequently, the biomass of the host plant and the photosynthetic carbon left for AM fungi were obviously decreased (p < 0.05). The direct and indirect influences of Fe3O4NPs at high concentration result in the reduction of AM fungal ecological function, such as the significantly decreased (p < 0.05) root mycorrhizal colonization, soil GRSP content, and alkaline phosphatase activity. This process, in return, could deteriorate the nutrient provision of AM fungi for plant. As evidence, soil available P content and P nutrition in plants were significantly decreased (p < 0.05).

Conclusions

The Fe3O4NPs at high concentration would destroy the mutual interaction of AM fungi-plant and negatively influence the soil carbon accumulation and P cycling, both of which go against crop yield and soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  Google Scholar 

  • Angelard C, Tanner CJ, Fontanillas P, Niculita-Hirzel H, Masclaux F, Sanders IR (2014) Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. Isme J 8:284–294

    Article  CAS  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  Google Scholar 

  • Bainard LD, Bainard JD, Hamel C, Gan Y (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 88:333–344

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice-conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oand titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650

    Article  CAS  Google Scholar 

  • Cao JL, Feng YZ, Lin XG, Wang JH (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10

    Article  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  Google Scholar 

  • Caporaso JG et al (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  Google Scholar 

  • Chakraborti T, Mondal M, Roychoudhury S, Chakraborti S (1999) Oxidant, mitochondria and calcium: an overview. Cell Signal 11:77–85

    Article  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, ElFerjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L. Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cornejo P, Perez-Tienda J, Meier S, Valderas A, Borie F, Azcon-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol Biochem 57:925–928

    Article  CAS  Google Scholar 

  • Coughlan AP, Dalpe Y, Lapointe L, Piche Y (2000) Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Can J For Res 30:1543–1554

    Article  Google Scholar 

  • Cui XC, JL H, Wang JH, Yang JS, Lin XG (2016) Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Appl Soil Ecol 98:140–149

    Article  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271

    Article  Google Scholar 

  • Dimkpa CO, Calder A, Gajjar P, Merugu S, Huang WJ, Britt DW, McLean JE, Johnson WP, Anderson AJ (2011) Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J Hazard Mater 188:428–435

    Article  CAS  Google Scholar 

  • Dinesh R, Shome BR, Shome R, Bandyopadhyay AK (1998) Soil enzymes in the mangroves: activities and their relation to relevant soil properties. Current Sci 75:510–512

    CAS  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108

    Article  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Feng YZ, Cui XC, He SY, Dong G, Chen M, Wang JH, Lin XG (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    Article  CAS  Google Scholar 

  • Ge Y, Priester JH, Van De Werfhorst LC, Walker SL, Nisbet RM, An Y-J, Schimel JP, Gardea-Torresdey JL, Holden PA (2014) Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. Environ Sci Technol 48:13489–13496

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  Google Scholar 

  • Ghosh A, Maity B, Chakrabarti K, Chattopadhyay D (2007) Bacterial diversity of East Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microb Ecol 54:452–459

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gu BH, Schmitt J, Chen Z, Liang LY, Mccarthy JF (1995) Adsorption and desorption of different organic-matter fractions on iron-oxide. Geochim Cosmochim Acta 59:219–229

    Article  CAS  Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129

    Article  CAS  Google Scholar 

  • Hassan SED, Boon E, St-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20:3469–3483

    Article  Google Scholar 

  • Hauke J, Kossowski T (2011) Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae 30:87–93

    Article  Google Scholar 

  • He SY, Feng YZ, Ni J, Sun YF, Xue LH, Feng YF, YL Y, Lin XG, Yang LZ (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202

    Article  CAS  Google Scholar 

  • Illes E, Tombacz E (2006) The effect of humic acid adsorption on pH dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interf Sci 295:115–123

    Article  CAS  Google Scholar 

  • Janos DP, Garamszegi S, Beltran B (2008) Glomalin extraction and measurement. Soil Biol Biochem 40:728–739

    Article  CAS  Google Scholar 

  • Jia ZJ, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  Google Scholar 

  • Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biol Biochem 34:1521–1524

    Article  CAS  Google Scholar 

  • Joner EJ (2000) The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza mediated phosphorus uptake in subterranean clover. Biol Fert Soils 32:435–440

    Article  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Kaye JP, McCulley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11:575–587

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822

    Article  CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122

    Article  CAS  Google Scholar 

  • Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Article  CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • Molday RS (1984): Magnetic iron-dextran microspheres, USA

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nowack B (2009) The behavior and effects of nanoparticles in the environment. Environ Pollut 157:1063–1064

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  Google Scholar 

  • Prashant C, Dipak M, Yang CT, Chuang KH, Jun D, Feng SS (2010) Superparamagnetic iron oxide-loaded poly (lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Biomaterials 31:5588–5597

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rufyikiri G, Thiry Y, Declerck S (2003) Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions. New Phytol 158:391–399

    Article  CAS  Google Scholar 

  • Schoonen MAA, Cohn CA, Roemer E, Laffers R, Simon SR, Riordan, TO (2006) Mineral-induced formation of reactive oxygen species. In: Medical mineralogy and geochemistry. Reviews in mineralogy and geochemistry, Washington, 64, pp 179–221

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sjogren CE, Johansson C, Naevestad A, Sontum PC, BrileySaebo K, Fahlvik AK (1997) Crystal size and properties of superparamagnetic iron oxide (SPIO) particles. Magn Reson Imaging 15:55–67

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analyses, part 2, chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, pp. 903–947

    Google Scholar 

  • Tanner S, Hunter C, Elrodf V, Nowickl J, Barber R, Lindley S, Watson A, Van Scoy K, Law C, Liddicoat M (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371

  • Thomas RL, Sheard RW, Moyer JR (1967) Comparison of conventional and automated procedures for nitrogen phosphorus and potassium analysis of plant material using a single digestion. Agron J 59:240–243

    Article  CAS  Google Scholar 

  • Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361

    Article  Google Scholar 

  • Wang CG, Irudayaraj J (2010) Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6:283–289

    Article  CAS  Google Scholar 

  • Wang H, Kou X, Pei Z, Xial JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  Google Scholar 

  • Wang FY, Lin XG, Yin R, LH W (2006) Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in amulti-metal-contaminated soil under unsterilized conditions. Appl Soil Ecol 31:110–119

    Article  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nano Res 7:409–433

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Xiang D, Verbruggen E, YJ H, Veresoglou SD, Rillig MC, Zhou W, TL X, Li H, Hao ZP, Chen YL, Chen BD (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol 204:968–978

    Article  CAS  Google Scholar 

  • Yang YR, Song YY, Scheller HV, Ghosh A, Ban YH, Chen H, Tang M (2015) Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol Biochem 86:146–158

    Article  CAS  Google Scholar 

  • Zhang W, Rittmann B, Chen YS (2011) Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ Sci Technol 45:2172–2178

    Article  CAS  Google Scholar 

  • Zhou DM, Jin SY, Wang YJ, Wang P, Weng NY, Wang Y (2012) Assessing the impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in soils. Soil Sediment Contam 21:101–114

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor 10:713–717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Yongjie Yu and M.S. Jianwei Zhang for their assistance with laboratory experimental analysis. This work was supported by the National Natural Science Foundation of China (Nos. 41371255, 41301267, 41271256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangui Lin.

Additional information

Responsible editor: Jizheng He

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Feng, Y., Lin, X. et al. Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. J Soils Sediments 17, 841–851 (2017). https://doi.org/10.1007/s11368-016-1561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1561-8

Keywords

Navigation