Skip to main content
Log in

A fast and robust affine-invariant method for shape registration under partial occlusion

  • Regular Paper
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

The acquisition of the planar images of the same object may be considerably different due to viewpoint dependencies, which influences the shape extraction, hence possibly making the curves partially visible and often accompanied by perspective distortions. In this paper, we propose a new contour alignment system relating to the special affine transformations that contain rotations and stretches, useful for describing planar contours which move in three-dimensional space and which are far enough away from the camera. The registration system that we suggest here includes a first optimization step relating to the dataset concerned. It consists in optimizing the number of correspondence points N between the curves to be registered. This is achieved by minimizing the conditioning of the correspondence matrix which is obtained by matching the re-sampling points by the equi-affine length of the two curves. This correspondence matrix is calculated for all the pairs of curves of the dataset by varying N. After extracting the optimal value of N, the estimation of the special affine transformation between a given couple of curves is realized by the pseudo-inverse of the correspondence matrix in the \(N_{0}\) resolution. This approach allows both providing the best accuracy and stabilizing the results of registration. We evaluate and compare our algorithm with other existing methods under different shape variations including noise, missing parts, and articulated deformations. The experiments are conducted on several known datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Adamek T, O’Connor NE (2004) A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans Circuits Syst Video Technol 14:742–753

    Article  Google Scholar 

  2. Alajlan N, Kamel MS, Freeman GH (2008) Geometry-based image retrieval in binary image databases. IEEE Trans Pattern Anal Mach Intell 30:1003–1013

    Article  Google Scholar 

  3. Arbter K, Snyder WE, Burkhardt H, Hirzinger G (1990) Application of affine-invariant Fourier descriptors to recognition of 3-D objects. IEEE Trans Pattern Anal Mach Intell 12:640–647

    Article  Google Scholar 

  4. Bachelder IA, Ullman S (1992) Contour matching using local affine transformations. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab

  5. Bai X, Yang X, Latecki LJ, Liu W, Tu Z (2009) Learning context-sensitive shape similarity by graph transduction. IEEE Trans Pattern Anal Mach Intell 32:861–874

    Google Scholar 

  6. BenKhlifa A, Ghorbel F (2019) An almost complete curvature scale space representation: Euclidean case. Signal Process Image Commun, pp 32–43

  7. Benzinou A, Nasreddine K, Khalil M, Faour G (2014) An optimal elastic partial shape matching via shape geodesics. In: 2014 IEEE international conference on image processing, pp 4742–4746

  8. Bruckstein AM, Katzir N, Lindenbaum M, Porat M (1992) Similarity-invariant signatures for partially occluded planar shapes. Int J Comput Vis 7:271–285

    Article  Google Scholar 

  9. Bryner D, Klassen E, Le H, Srivastava A (2013) 2D affine and projective shape analysis. IEEE Trans Pattern Anal Mach Intell 36:998–1011

    Article  Google Scholar 

  10. Cao X, Fan J, Dong P, Ahmad S, Yap PT, Shen D (2020) Image registration using machine and deep learning. In: Handbook of medical image computing and computer assisted intervention, 319–342

  11. Cao X, Yang J, Zhang J, Nie D, Kim M, Wang Q, Shen D (2017) Deformable image registration based on similarity-steered CNN regression. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 300-308

  12. Cao Y, Zhang Z, Czogiel I, Dryden I, Wang S (2011) 2D nonrigid partial shape matching using MCMC and contour subdivision. CVPR, pp 2345–2352

  13. Chaker F, Bannour MT, Ghorbel F (2007) Contour retrieval and matching by affine invariant fourier descriptors. MVA7, pp 291–294

  14. Chen L, Feris R, Turk M (2008) Efficient partial shape matching using smith-waterman algorithm. In 2008 IEEE computer society conference on computer vision and pattern recognition workshops, pp 1–6

  15. Crimmins TR (1982) A complete set of Fourier descriptors for two-dimensional shapes. IEEE Trans. Syst Man Cybern 12:848–855

    Article  MathSciNet  Google Scholar 

  16. Cui M, Femiani J, Hu J, Wonka P, Razdan A (2009) Curve matching for open 2D curves. Pattern Recognit. Lett. 30:1–10

    Article  Google Scholar 

  17. Cyganski D (1987) An affine transformation invariant curvature function. In: 1st international conference on computer vision

  18. Cyganski D, Vaz RF (1995) A linear signal decomposition approach to affine invariant contour identification. Pattern Recognit. 28:1845–1853

    Article  Google Scholar 

  19. Cyganski D, Cott TA, Orr JA, Dodson RJ (1988) Object identification and orientation estimation from contours based on an affine invariant curvature. Intell Robots Comput Vis VI:33–39

    Google Scholar 

  20. Daliri MR, Torre V (2008) Robust symbolic representation for shape recognition and retrieval. Pattern Recognit 41:1782–1798

    Article  MATH  Google Scholar 

  21. De Vos BD, Berendsen F, Viergever MA, Staring M, Isgum I (2017) End-to-end unsupervised deformable image registration with a convolutional neural network. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp 204–212

  22. De Vos BD, Berendsen F, Viergever MA, Sokooti H, Staring M, Isgum I (2019) A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal 52:128–143

    Article  Google Scholar 

  23. Demirci MF (2010) Efficient shape retrieval under partial matching. In 2010 20th International Conference on Pattern Recognition, 3057-3060

  24. Domokos C, Kato Z (2010) Parametric estimation of affine deformations of planar shapes. Pattern Recogn 43:569–578

    Article  MATH  Google Scholar 

  25. Donoser M, Riemenschneider H, Bischof H (2009) Efficient partial shape matching of outer contours. In: Asian conference on computer vision, pp 281–292

  26. Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Brox T (2015) Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 2758–2766

  27. Egozi A, Keller Y, Guterman H (2010) Improving shape retrieval by spectral matching and meta similarity. IEEE Trans Image Process 19:1319–1327

    Article  MathSciNet  MATH  Google Scholar 

  28. El Rube I, Ahmed M, Kamel M (2005) Wavelet approximation-based affine invariant shape representation functions. IEEE Trans Pattern Anal Mach Intell 28:323–327

    Article  Google Scholar 

  29. El-ghazal A, Basir O, Belkasim S (2009) Farthest point distance: a new shape signature for Fourier descriptors. Signal Process. Image Commun. 24:572–586

    Article  Google Scholar 

  30. El-ghazal A, Basir O, Belkasim S (2012) Invariant curvature-based Fourier shape descriptors. Journal of Visual Communication and Image Representation, 622-633

  31. Elghoul S, Ghorbel F (2021) Fast global SA (2, R) shape registration based on invertible invariant descriptor. Signal Process Image Commun 90:116058

    Article  Google Scholar 

  32. Elghoul S, Ghorbel F (2018) An efficient 2D curve matching algorithm under affine transformations. In: VISIGRAPP, pp 474–480

  33. Eppenhof KA, Lafarge MW, Moeskops P, Veta M, Pluim JP (2018) Deformable image registration using convolutional neural networks. Image Processing, In Medical Imaging

  34. Felzenszwalb PF, Schwartz JD (2007) Hierarchical matching of deformable shapes. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8

  35. Ferrante E, Paragios N (2017) Slice-to-volume medical image registration: a survey. Med Image Anal 39:101–123

    Article  Google Scholar 

  36. Ferrante E, Dokania PK, Silva RM, Paragios N (2018) Weakly supervised learning of metric aggregations for deformable image registration. IEEE J Biomed Health Inf 23:1374–1384

    Article  Google Scholar 

  37. Fu H, Tian Z, Ran M, Fan M (2013) Novel affine-invariant curve descriptor for curve matching and occluded object recognition. IET Comput Vis, pp 279–292

  38. Garg R, Bg VK, Carneiro G, Reid I (2016) Unsupervised CNN for single view depth estimation: geometry to the rescue. In: European conference on computer vision, pp 740–756

  39. Genovese A, Piuri V, Scotti F (2014) Palmprint biometrics. In: Touchless palmprint recognition systems, pp 49–109

  40. Ghorbel F (1994) A complete invariant description for gray-level images by the harmonic analysis approach. Pattern Recognit. Lett. 15:1043–1051

    Article  Google Scholar 

  41. Ghorbel F (1998) Towards a unitary formulation for invariant image description: application to image coding. Ann Telecommun 53:242–260

    Article  Google Scholar 

  42. Gopalan R, Turaga P, Chellappa R (2010) Articulation-invariant representation of non-planar shapes. In European Conference on Computer Vision, 286-299

  43. Gope C, Kehtarnavaz N, Hillman G, Wursig B (2005) An affine invariant curve matching method for photo-identification of marine mammals. Pattern Recognit 38:125–132

    Article  Google Scholar 

  44. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory, 179–187

  45. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179–187

    Article  MATH  Google Scholar 

  46. Hu N (2011) Centroaffine space curves with constant curvatures and homogeneous surfaces. J Geometry 102:103–114

    Article  MathSciNet  MATH  Google Scholar 

  47. Hu R, Jia W, Ling H, Huang D (2012) Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. Image Process. 21:4667–4672

    Article  MathSciNet  MATH  Google Scholar 

  48. Huang X, Wang B, Zhang L (2005) A new scheme for extraction of affine invariant descriptor and affine motion estimation based on independent component analysis. Pattern Recognit Lett 28:1244–1255

    Article  Google Scholar 

  49. Hu Y, Modat M, Gibson E, Ghavami N, Bonmati E, Moore CM, Vercauteren T (2018) Label-driven weakly-supervised learning for multimodal deformable image registration. In 2018 IEEE 15th International Symposium on Biomedical Imaging, 1070-1074

  50. Huttenlocher DP, Kedem K (1990) Computing the minimum Hausdorff distance for point sets under translation. In: Proceedings of the sixth annual symposium on computational geometry, pp 340–349

  51. Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: Evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2462–2470

  52. Jaderberg M, Simonyan K, Zisserman A (2015) Spatial transformer networks. Adv Neural Inf Process Syst 2:2017–2025

    Google Scholar 

  53. Jia Q, Fan X, Liu Y, Li H, Luo Z, Guo H (2016) Hierarchical projective invariant contexts for shape recognition. Pattern Recognit 52:358–374

    Article  Google Scholar 

  54. Jin Q, Yan P (1992) A new method of extracting invariants under affine transform. In: 11th IAPR international conference on pattern recognition, pp 742–745

  55. Joo H, Jeong Y, Duchenne O, Ko SY, Kweon IS (2009) Graph-based robust shape matching for robotic application. In: 2009 IEEE international conference on robotics and automation, pp 1207–1213

  56. Joshi K, Patel MI (2020) Recent advances in local feature detector and descriptor: a literature survey. Int J Multimed Inf Retr 9:1–17

    Google Scholar 

  57. Khalil MI, Bayoumi M (2001) A dyadic wavelet affine invariant function for 2D shape recognition. IEEE Trans Pattern Anal Mach Intell 23:1152–1164

    Article  Google Scholar 

  58. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Analy Mach Intell 12:489–497

    Article  Google Scholar 

  59. Krebs J, Mansi T, Delingette H, Zhang L, Ghesu FC, Miao S, Kamen A (2017) Robust non-rigid registration through agent-based action learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 344-352

  60. Krotosky SJ, Trivedi M (2007) Mutual information based registration of multimodal stereo videos for person tracking. Computer Vision and Image Understanding, 270-287

  61. Kun Z, Xiao M, Xinguo L (2019) Shape matching based on multi-scale invariant features. IEEE Access 7:115637–115649

    Article  Google Scholar 

  62. Laiche N, Larabi S (2018) Shape retrieval through normalized B-splines curves. Multimedia Tools Appl 77:13891–13921

    Article  Google Scholar 

  63. Lamdan Y, Schwartz JT, Wolfson HJ (1990) Affine invariant model-based object recognition. IEEE Trans Robot Autom 6:578–589

    Article  Google Scholar 

  64. Latecki LJ, Lakamper R, Eckhardt T (2000) Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings IEEE conference on computer vision and pattern recognition, pp 424–429

  65. Latecki LJ, Lakaemper R, Wolter D (2005) Optimal partial shape similarity. Image Vis Comput 23:227–236

    Article  Google Scholar 

  66. Latecki LJ, Megalooikonomou V, Wang Q, Yu D (2007) An elastic partial shape matching technique. Pattern Recognit 40:3069–3080

    Article  MATH  Google Scholar 

  67. Liao R, Miao S, Tournemire P, Grbic S, Kamen A, Mansi T, Comaniciu D (2017) An artificial agent for robust image registration. In Proceedings of the AAAI Conference on Artificial Intelligence

  68. Lin WS, Fang CH (2007) Synthesized affine invariant function for 2D shape recognition. Pattern Recognit. 40:1921–1928

    Article  MATH  Google Scholar 

  69. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29:286–299

    Article  Google Scholar 

  70. Ling H, Okada K (2007) An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans Pattern Anal Mach Intell 29:840–853

    Article  Google Scholar 

  71. Liu H (2014) Curves in affine and semi-Euclidean Spaces. Results Math 65:235–249

    Article  MathSciNet  MATH  Google Scholar 

  72. Mai F, Chang CQ, Hung YS (2011) A subspace approach for matching 2D shapes under affine distortions. Pattern Recognit 44:210–221

    Article  MATH  Google Scholar 

  73. Mai F, Chang CQ, Hung YS (2010) Affine-invariant shape matching and recognition under partial occlusion. In: 2010 IEEE international conference on image processing, pp 4605–4608

  74. Marvaniya S, Gupta R, Mittal A (2018) Adaptive locally affine-invariant shape matching. Mach Vis Appl 29:553–572

    Article  Google Scholar 

  75. Michel D, Oikonomidis I, Argyros A (2011) Scale invariant and deformation tolerant partial shape matching. Image and Vision Computing, 459-469

  76. Mokhtarian F, Abbasi S (2001) Affine curvature scale space with affine length parametrisation. Pattern Anal 4:1–8

    Article  MathSciNet  MATH  Google Scholar 

  77. Morel JM, Yu G (2009) ASIFT: A new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2:438–469

    Article  MathSciNet  MATH  Google Scholar 

  78. Mori G, Belongie S, Malik J (2005) Efficient shape matching using shape contexts. IEEE Trans Pattern Anal Mach Intell 27:1832–1837

    Article  MATH  Google Scholar 

  79. Moyou M, Rangarajan A, Corring J, Peter AM (2019) A Grassmannian graph approach to affine invariant feature matching. IEEE Trans Image Process, pp 3374–3387

  80. Nomizu K, Katsumi N, Sasaki T (1994) Affine differential geometry: geometry of affine immersions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  81. Olver PJ (2010) Moving frames and differential invariants in centro-affine geometry. Lobachevskii J Math 31:77–89

    Article  MathSciNet  MATH  Google Scholar 

  82. Olver PJ (2015) Modern developments in the theory and applications of moving frames. London Math Soc Impact150 Stories 1:14–50

    Google Scholar 

  83. Orrite C, Herrero JE (2004) Shape matching of partially occluded curves invariant under projective transformation. Comput Vis Image Understand 93:34–64

    Article  Google Scholar 

  84. Osowski S (2002) Fourier and wavelet descriptors for shape recognition using neural networks a comparative study. Pattern Recognit 35:1949–1957

    Article  MATH  Google Scholar 

  85. Raviv D, Kimmel R (2015) Affine invariant geometry for non-rigid shapes. Int J Comput Vis 111:1–11

    Article  MathSciNet  MATH  Google Scholar 

  86. Reiss TH (1991) The revised fundamental theorem of moment invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 830-834

  87. Rodriguez M, Facciolo G, Gioi RGV, Muse P, Delon J (2020) Robust estimation of local affine maps and its applications to image matching. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 1342–1351

  88. Rui Y, She AC, Huang TS (1997) A modified Fourier descriptor for shape matching in MARS. In: Image databases and multi-media search, pp 165–177

  89. Saber E, Xu Y, Tekalp AM (2005) Partial shape recognition by sub-matrix matching for partial matching guided image labeling. Pattern Recognit 38:1560–1573

    Article  Google Scholar 

  90. Sebastian TB, Philip N, Benjamin B (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26:550–571

    Article  Google Scholar 

  91. Shan Y, Sawhney HS, Matei B, Kumar R (2006) Shapeme histogram projection and matching for partial object recognition. IEEE Trans Pattern Anal Mach Intell 28:568–577

    Article  Google Scholar 

  92. Sharma A, Horaud R, Mateus D (2021) 3D shape registration using spectral graph embedding and probabilistic matching. ArXiv preprint

  93. Shekar BH, Pilar B, Kittler J (2015) An unification of inner distance shape context and local binary pattern for shape representation and classification. In: Proceedings of the 2nd international conference on perception and machine intelligence, pp 46–55

  94. Shu X, Wu XJ (2011) A novel contour descriptor for 2D shape matching and its application to image retrieval. Image Vis Comput 29:286–294

    Article  Google Scholar 

  95. Soderkvist O (2001) Computer vision classification of leaves from Swedish trees

  96. Sokic E, Konjicija S (2014) Novel fourier descriptor based on complex coordinates shape signature. In: 2014 12th international workshop on content-based multimedia indexing (CBMI), pp 1–4

  97. Spivak M (1975) A comprehensive introduction to differential geometry. Publish or Perish, Incorporated

  98. Stergios C, Mihir S, Maria V, Guillaume C, Marie-Pierre R, Stavroula M, Nikos P (2018) Linear and deformable image registration with 3D convolutional neural networks. In: Image analysis for moving organ, breast, and thoracic images, pp 13–22

  99. Temlyakov A, Munsell BC, Waggoner JW, Wang S (2010) Two perceptually motivated strategies for shape classification. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2289–2296

  100. Thies J, Zollhofer M, Stamminger M, Theobalt C, Niener M (2016) Face2face: Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2387-2395

  101. Tieng QM, Boles W (1995) An application of wavelet-based affine-invariant representation. Pattern Recognit. Lett. 16:1287–1296

    Article  Google Scholar 

  102. Turney JL, Trevor NM, Richard A (1985) Recognizing partially occluded parts. IEEE Trans Pattern Anal Mach Intell 4:410–421

    Article  Google Scholar 

  103. Tu Z, Yuille AL (2004) Shape matching and recognition using generative models and informative features. In: European conference on computer vision, pp 195–209

  104. Wang J, Bai X, You X, Liu W, Latecki LJ (2012) Shape matching and classification using height functions. Pattern Recognit Lett 33:134–143

    Article  Google Scholar 

  105. Wang Z, Xu G, Cheng Y, Guo R, Wang Z (2018) A curvature salience descriptor for full and partial shape matching. Multimedia Tools Appl 77:27405–27426

    Article  Google Scholar 

  106. Wang W, Yan X, Wang Z, Shi J (2017) A robust affine invariant point extraction algorithm for image registration. In: 2017 10th international symposium on computational intelligence and design, pp 79–82

  107. Wu J, Rehg JM (2010) Centrist: A visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33:1489–1501

    Google Scholar 

  108. Xu C, Liu J, Tang X (2008) 2D shape matching by contour flexibility. IEEE Trans Pattern Anal Mach Intell 31:180–186

    Google Scholar 

  109. Yang Y, Yu Y (2020) Moving frames and differential invariants on fully affine planar curves. Bull Malays Math Sci Soc 43:3229–3258

    Article  MathSciNet  MATH  Google Scholar 

  110. Yang J, Wang H, Yuan J, Li Y, Liu J (2016) Invariant multi-scale descriptor for shape representation, matching and retrieval. Comput Vis Image Understand 145:43–58

    Article  Google Scholar 

  111. Yang C, Wei H, Yu Q (2018) A novel method for 2D nonrigid partial shape matching. Neurocomputing 275:1160–1176

    Article  Google Scholar 

  112. Yang X, Koknar-Tezel S, Latecki LJ (2009) Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: 2009 IEEE conference on computer vision and pattern recognition, pp 357–364

  113. Yang G, Li R, Liu Y, Wang J (2021) A robust nonrigid point set registration framework based on global and intrinsic topological constraints. Vis Comput 1–21

  114. Yang C, Wei H, Yu Q (2016) Multiscale triangular centroid distance for shape-based plant leaf recognition. EGAI, pp 269–276

  115. Yang C, Yu Q (2019) Multiscale Fourier descriptor based on triangular features for shape retrieval. Signal Process Image Commun, pp 110–119

  116. Yang Y, Yu Y (2018) Affine Maurer Cartan invariants and their applications in self-affine fractals. Fractals

  117. Ye Y, Bruzzone L, Shan J, Bovolo F, Zhu Q (2019) Fast and robust matching for multimodal remote sensing image registration. IEEE Trans Geosci Remote Sens 57:9059–9070

    Article  Google Scholar 

  118. You X, Tang Y (2007) Wavelet-based approach to character skeleton. IEEE Transactions on Image Processing, 1220-1231

  119. Zhang GM, Chu J (2011) Recognizing partially occluded object from a line drawing. J Comput 6:1740–1747

    Article  Google Scholar 

  120. Zhang D, Lu G (2005) Study and evaluation of different Fourier methods for image retrieval. Image Vis. Comput. 23:33–49

  121. Zhang T, Li J, Jia W, Sun J, Yang H (2018) Fast and robust occluded face detection in ATM surveillance. Pattern Recognit Lett 107:33–40

    Article  Google Scholar 

  122. Zhang Y, Cui J, Wang Z, Kang J, Min Y (2020) Leaf image recognition based on bag of features. Appl Sci 10:5177

    Article  Google Scholar 

  123. Zhang D, Lu G (2002) A comparative study of Fourier descriptors for shape representation and retrieval. In: 5th Asian conference on computer vision

  124. Zhang G, Xu J, Liu J (2015) A new method for recognition partially occluded curved objects under affine transformation. In 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 456-461

  125. Zhao C, Chan S, Cham WK, Chu LM (2015) Plant identification using leaf shapes a pattern counting approach. Pattern Recognit 48:3203–3215

    Article  Google Scholar 

  126. Zuliani M, Bhagavathy S, Manjunath BS, Kenney CS (2004) Affine-invariant curve matching. In: 2004 international conference on image processing, pp 3041–3044

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinda Elghoul.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elghoul, S., Ghorbel, F. A fast and robust affine-invariant method for shape registration under partial occlusion. Int J Multimed Info Retr 11, 39–59 (2022). https://doi.org/10.1007/s13735-021-00224-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-021-00224-3

Keywords

Navigation