Skip to main content
Log in

Adaptive locally affine-invariant shape matching

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Matching deformable objects using their shapes are an important problem in computer vision since shape is perhaps the most distinguishable characteristic of an object. The problem is difficult due to many factors such as intra-class variations, local deformations, articulations, viewpoint changes and missed and extraneous contour portions due to errors in shape extraction. While small local deformations have been handled in the literature by allowing some leeway in the matching of individual contour points via methods such as Chamfer distance and Hausdorff distance, handling more severe deformations and articulations has been done by applying local geometric corrections such as similarity or affine. However, determining which portions of the shape should be used for the geometric corrections is very hard, although some methods have been tried. In this paper, we address this problem by an efficient search for the group of contour segments to be clustered together for a geometric correction using dynamic programming by essentially searching for the segmentations of two shapes that lead to the best matching between them. At the same time, we allow portions of the contours to remain unmatched to handle missing and extraneous contour portions. Experiments indicate that our method outperforms other algorithms, especially when the shapes to be matched are more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. http://www.dabi.temple.edu/~hbling/code/idsc_distribute.zip.

  2. http://www.umiacs.umd.edu/~raghuram/Segmentation_FULL_NCut.zip.

References

  1. Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. In: IEEE Transactions on CSVT (2004)

  2. Alajlan, N., Kamel, M., Freeman, G.: Geometry-based image retrieval in binary image databases. In: IEEE PAMI (2008)

  3. Bai, X., Yang, X., Latecki, L., Liu, W., Tu, Z.: Learning context-sensitive shape similarity by graph transduction. In: IEEE PAMI (2010)

  4. Bai, X., Rao, C., Wang, X.: Shape vocabulary: a robust and efficient shape representation for shape matching. In: IEEE Transactions on Image Processing (2014)

  5. Belongie, S., Puzhicha, J., Malik, J.: Shape matching and object recognition using shape contexts. In: IEEE PAMI (2002)

  6. Bhattacharjee, S.D., Mittal, A.: Part-based deformable object detection with a single sketch. In: CVIU (2015)

  7. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vis. Graphics Image Process. 27(3), 321–345 (1984)

    Article  Google Scholar 

  8. Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Analysis of two-dimensional non-rigid shapes. Int. J. Comput. Vis. 78, 67–88 (2008)

    Article  Google Scholar 

  9. Brox, T., Bourdev, L., Maji, S., Malik, J.: Object segmentation by alignment of poselet activations to image contours. In: CVPR (2011)

  10. Bryner, D., Klassen, E., Le, H., Srivastava, A.: 2d affine and projective shape analysis. In: IEEE PAMI (2014)

  11. Cao, Y., Zhang, Z., Czogiel, I., Dryden, I., Wang, S.: 2d nonrigid partial shape matching using MCMC and contour subdivision. In: CVPR (2011)

  12. Chen, L., Feris, R., Turk, M.: Efficient partial shape matching using Smith–Waterman algorithm. In: CVPRW, pp 1–6 (2008)

  13. Cohignac, T., Lopez, C., Morel, J.M.: Integral and local affine invariant parameter and application to shape recognition. In: ICPR (1994)

  14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  15. Daliri, M.R., Torre, V.: Robust symbolic representation for shape recognition and retrieval. Pattern Recognit. 41(5), 1782–1798 (2008)

    Article  MATH  Google Scholar 

  16. Elad, A., Kimmel, R,: On bending invariant signatures fir surfaces. In: IEEE PAMI (2003)

  17. Felzenszwalb, P.: Representation and detection of deformable shapes. In: IEEE PAMI (2005)

  18. Felzenszwalb, P., Schwartz, J.: Hierarchical matching of deformable shapes. In: CVPR (2007)

  19. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. IEEE 30, 36–51 (2008)

    Google Scholar 

  20. Gopalan, R., Turaga, P., Chellappa, R.: Articulation-invariant representation of non-planer shapes. In: Proceedings of the 11th European Conference on Computer Vision Conference on Computer Vision: Part III, pp. 286–299. Springer (2010)

  21. Guo, G., Wang, Y., Jiang, T., Yuille, A.L., Fang, F., Gao, W.: A shape reconstructability measure of object part importance with applications to object detection and localization. In: IJCV (2014)

  22. He, X., Yung, N.H.C.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: ICPR (2004)

  23. Hoffman, D.D., Richards, W.: Parts of cognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  24. Hong, B.W., Prados, E., Soatto, S., Vese, L.: Shape representation based on integral kernels: application to image matching and segmentation. In: CVPR (2006)

  25. Huang, X., Paragios, N., Metaxas, D.N.: Shape registration in implicit spaces using information theory and free form deformations. In: IEEE PAMI (2006)

  26. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. In: IEEE PAMI (1993)

  27. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B.: Leafsnap: a computer vision system for automatic plant species identification. In: ECCV (2012)

  28. Latecki, L., Lakamper, R.: Shape similarity measure based on correspondence of visual parts. In: IEEE PAMI (2000)

  29. Latecki, L., Lakamper, R., Eckhardt, T.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR (2000)

  30. Latecki, L.J., Megalooikonomou, V., Wang, Q., Yu, D.: An elastic shape matching technique. Pattern Recognit. 40(11), 3069–3080 (2007)

    Article  MATH  Google Scholar 

  31. Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE PAMI 29(2), 286–299 (2007)

    Article  Google Scholar 

  32. Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust histogram comparison. In: IEEE PAMI (2007)

  33. Liu, H., Liu, W., Latecki, L.: Convex shape decomposition. In: CVPR (2010a)

  34. Liu, M.Y., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching. In: CVPR (2010b)

  35. Lu, C., Latecki, L.J., Adluru, N., Yang, X., Ling, H.: Shape guided contour grouping with particle filters. In: ICCV (2009)

  36. Ma, T., Latecki, L.: From partial shape matching through local information to robust global shape similarity for object detection. In: CVPR (2011)

  37. Macrini, D., Dickinson, S.J., Fleet, D.J., Siddiqi, K.: Bone graphs: medial shape parsing and abstraction. In: CVIU (2011)

  38. McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval. In: CVPR (2006)

  39. Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. In: IEEE PAMI (1998)

  40. Mori, G., Belongie, S., Malik, J.: Efficient shape matching using shape contexts. In: IEEE PAMI (2005)

  41. Ravishankar, S., Jain, A., Mittal, A.: Multi-stage contour based detection of deformable objects. In: ECCV (2008)

  42. Russell, C., Torr, P.H.S., Kohli, P.: Associative hierarchical CRFS for object class image segmentation. In: ICCV (2009)

  43. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. In: IEEE PAMI (2004)

  44. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. In: IEEE PAMI (2008)

  45. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. Int. J. Comput. Vis. 35, 13–32 (1999)

    Article  Google Scholar 

  46. Super, B.J.: Retrieval from shape databases using chance probability functions and fixed correspondence. Int. J. Pattern Recognit. Artif. Intell. 20, 1117–1138 (2006)

    Article  Google Scholar 

  47. Temlyakov, A., Munsell, B., Waggoner, J., Wang, S.: Two perceptually motivated strategies for shape classification. In: CVPR (2010)

  48. Tu, Z., Yuille, A.: Shape matching and recognition—using generative models and informative features. In: ECCV (2004)

  49. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. In: Foundations and Trends in Computer Graphics and Vision (2008)

  50. Wang, J., Bai, X., You, X., Liu, W., Latecki, L.J.: Shape matching and classification using height functions. In: PRL (2012)

  51. Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of contour fragments for robust shape classification. Pattern Recognit. 47, 2116–2125 (2014)

    Article  Google Scholar 

  52. Xu, C., Liu, J., Tang, X.: 2d shape matching by contour flexibility. In: IEEE PAMI (2009)

  53. Yang, X., Koknar-Tezel, S., Latecki, L.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: CVPR (2009)

  54. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognit. 37(1), 1–19 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smit Marvaniya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marvaniya, S., Gupta, R. & Mittal, A. Adaptive locally affine-invariant shape matching. Machine Vision and Applications 29, 553–572 (2018). https://doi.org/10.1007/s00138-018-0912-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0912-4

Keywords

Navigation