Skip to main content
Log in

Systems biology approach deciphering the biochemical signaling pathway and pharmacokinetic study of PI3K/mTOR/p53-Mdm2 module involved in neoplastic transformation

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

Cancer is a serious health concern growing at a rapid speed where normal cells take neoplastic transformation. Different pathway is tightly regulated with each other to maintain the harmony and sudden changes in single protein leads to aberrant changes in the whole system. Development of drugs to target these proteins aimed to block the signaling route that leads to cell death. Here, in this study, we performed in silico expression analysis of these potential proteins using system biological approach by mimicking the cell and understanding the behavior of different proteins in drugging condition. We performed in silico biomolecular interaction analysis for exploring the potential plant-derived compounds that can be served as an anticancerous drug with least toxicity by comparing with reference drug approved by FDA. Our results suggest that PI3K, p53-Mdm2 proteins are ideal proteins for targeting cancer cells, while overexpression of mTOR protein was observed when drug targeted this receptor. We state that PI3K family protein plays important role in drug discovery, and compounds obtained from in silico analysis can be served as a potential anticancerous drug for treating different cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson AR, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8(3):227–234

    Article  Google Scholar 

  • Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, Prasad J, Singh S, Samanta N, Sharma RK (2005) Radioprotection by plant products: present status and future prospects. Phytother Res 19(1):1–22

    Article  Google Scholar 

  • Arora D, Singh V, Singh A (2016) Modeling and simulation analysis of Salmonella typhimurium inside human epithelial cells: host-pathogen relationship analysis by system biology. In: Bioinformatics and systems biology (BSB), IEEE, pp 1–4

  • Arora D, Chaudhary R, Singh A (2017a) System biology approach to identify potential receptor for targeting cancer and biomolecular interaction studies of indole [2, 1-a] isoquinoline derivative as anticancerous drug candidate against it. Interdiscip Sci Sciences 26:1

    Google Scholar 

  • Arora D, Jyoti K, Singh A (2017b) Understanding the role of Salmonella pathogenic island 1 (SPI-I) and host-pathogen interaction for typhoid using system biology approach. Int J Bioinform Res Appl 13(3):187–199

    Article  Google Scholar 

  • Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci 103(5):1475–1479

    Article  Google Scholar 

  • Beauchamp EM, Platanias LC (2013) The evolution of the TOR pathway and its role in cancer. Oncogene 32(34):3923–3932

    Article  Google Scholar 

  • Boyd MR, Paull KD (1995) Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 34(2):91–109

    Article  Google Scholar 

  • Brent R (2000) Genomic biology. Cell 100(1):169–183

    Article  Google Scholar 

  • Chène P (2003) Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3(2):102–109

    Article  Google Scholar 

  • Chico LK, Van Eldik LJ, Watterson DM (2009) Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 8(11):892–909

    Article  Google Scholar 

  • Clarke PA, te Poele R, Wooster R, Workman P (2001) Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol 62(10):1311–1336

    Article  Google Scholar 

  • Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315

    Article  Google Scholar 

  • Cohen P, Alessi DR (2012) Kinase drug discovery–what’s next in the field? ACS Chem Biol 8(1):96–104

    Article  Google Scholar 

  • Csizmadia P (1999) September. MarvinSketch and MarvinView: molecule applets for the World Wide Web. In: Proceedings of ECSOC-3, the third international electronic conference on synthetic organic chemistry, September 1ą30, pp 367–369

  • Dräger A, Hassis N, Supper J, Schröder A, Zell A (2008) SBMLsqueezer: a cell designer plug-into generate kinetic rate equations for biochemical networks. BMC Syst Biol 2(1):39

    Article  Google Scholar 

  • Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11(5):905–919

    Article  Google Scholar 

  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040

    Article  Google Scholar 

  • Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5):159–162

    Article  Google Scholar 

  • Funahashi A, Morohashi M, Matsuoka Y, Jouraku A, Kitano H (2007) cell designer: a graphical biological network editor and workbench interfacing simulator. In: Choi S (ed) Introduction to systems biology. Humana Press, New York, pp 422–434

    Chapter  Google Scholar 

  • Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H (2008) Cell Designer 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96(8):1254–1265

    Article  Google Scholar 

  • Gressner AM, Weiskirchen R (2006) Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets. J Cell Mol Med 10(1):76–99

    Article  Google Scholar 

  • Hainaut P, Hollstein M (1999) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  Google Scholar 

  • Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291(5506):1001–1004

    Article  Google Scholar 

  • Hendriks BS, Hua F, Chabot JR (2008) Analysis of mechanistic pathway models in drug discovery: p38 pathway. Biotechnol Prog 24(1):96–109

    Article  Google Scholar 

  • Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a complex pathway simulator. Bioinformatics 22(24):3067–3074

    Article  Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D (2003) Cornish-Bowden A, Cuellar AA. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  Google Scholar 

  • Hutchinson TE, Zhang J, Xia SL, Kuchibhotla S, Block ER, Patel JM (2012) Enhanced phosphorylation of caveolar PKC-α limits peptide internalization in lung endothelial cells. Mol Cell Biochem 360(1–2):309–320

    Article  Google Scholar 

  • Insall RH, Weiner OD (2001) PIP3, PIP2, and cell movement—similar messages, different meanings? Dev Cell 1(6):743–747

    Article  Google Scholar 

  • Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40

    Article  Google Scholar 

  • Jänne PA, Gray N, Settleman J (2009) Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov 8(9):709–723

    Article  Google Scholar 

  • Jayaraj P, Sen S, Sharma A, Chosdol K, Kashyap S, Rai A, Pushker N, Bajaj M (2015) Eyelid sebaceous carcinoma: a novel mutation in lymphoid enhancer-binding factor-1. Br J Dermatol 173(3):811–814

    Article  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  Google Scholar 

  • Koutsogiannouli E, Papavassiliou AG, Papanikolaou NA (2013) Complexity in cancer biology: is systems biology the answer? Cancer Med 2(2):164–177

    Article  Google Scholar 

  • Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31(1):2–8

    Article  Google Scholar 

  • Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18(53):7644–7655

    Article  Google Scholar 

  • Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(20):3589–3594

    Article  Google Scholar 

  • Lewis NE, Abdel-Haleem AM (2013) The evolution of genome-scale models of cancer metabolism. Front Physiol 4:237

    Google Scholar 

  • Lin MC, Lin GZ, Hwang CI, Jian SY, Lin J, Shen YF, Lin G (2012) Synthesis and evaluation of a new series of tri-, di-, and mono-N-alkylcarbamylphloroglucinols as conformationally constrained inhibitors of cholesterol esterase. Protein Sci 21(9):1344–1357

    Article  Google Scholar 

  • Melnikova I, Golden J (2004) Targeting protein kinases. Nat Rev Drug Discov 3(12):993–994

    Article  Google Scholar 

  • Momand J, Wu HH, Dasgupta G (2000) MDM2—master regulator of the p53 tumor suppressor protein. Gene 242(1):15–29

    Article  Google Scholar 

  • Prives C (1998) Signaling to p53: breaking the MDM2–p53 circuit. Cell 95(1):5–8

    Article  Google Scholar 

  • Rozengurt E, Soares HP, Sinnet-Smith J (2014) Suppression of feedback loops mediated by PI3K/mTOR induces multiple over activation of compensatory pathways: an unintended consequence leading to drug resistance. Mol Cancer Ther 13(11):2477–2488

    Article  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito SI, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev 12(18):2831–2841

    Article  Google Scholar 

  • Sawyers CL, Abate-Shen C, Anderson KC, Barker A, Baselga J, Berger NA, Foti M, Jemal A, Lawrence TS, Li CI, Mardis ER (2013) AACR cancer progress report 2013. Clin Cancer Res 19(20 Suppl):S1–S98

    Article  Google Scholar 

  • Shangary S, Wang S (2008) Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 14(17):5318–5324

    Article  Google Scholar 

  • Shi D, Gu W (2012) Dual roles of MDM2 in the regulation of p53 ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer 3(3–4):240–248

    Article  Google Scholar 

  • Singh L, Pushker N, Sen S, Singh MK, Chauhan FA, Kashyap S (2015) Prognostic significance of polo-like kinases in retinoblastoma: correlation with patient outcome, clinical and histopathological parameters. Clin Exp Ophthalmol 43(6):550–557

    Article  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    Google Scholar 

  • Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19(56):6613

    Article  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000a) Surfing the p53 network. Nature 408(6810):307–310

    Article  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000b) Surfing the p53 network. Nature 408(6810):307–310

    Article  Google Scholar 

  • von Manstein V, Min Yang C, Richter D, Delis N, Vafaizadeh V, Groner B (2013) Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther 8(3):193–202

    Article  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604

    Article  Google Scholar 

  • Wade M, Li YC, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13(2):83–96

    Article  Google Scholar 

  • Yang Y, Li CC, Weissman AM (2004) Regulating the p53 system through ubiquitination. Oncogene 23(11):2096–2106

    Article  Google Scholar 

  • Yarden Y, Pines G (2012) The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 12(8):553–563

    Article  Google Scholar 

  • Yıldırım MA, Goh KI, Cusick ME, Barabási AL, Vidal M (2007) Drug—target network. Nat Biotechnol 25(10):1119–1126

    Article  Google Scholar 

Download references

Acknowledgement

This study was conducted in the Department of Biotechnology, G.B. Pant Engineering College (GBPEC), Pauri Garhwal (Uttarakhand). Devender Arora is thankful to TEQIP-II (Technical Education Quality Improvement Program) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet Singh.

Ethics declarations

Conflict of interest

Authors have no conflict of interest regarding the publication of paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, D., Singh, A. Systems biology approach deciphering the biochemical signaling pathway and pharmacokinetic study of PI3K/mTOR/p53-Mdm2 module involved in neoplastic transformation. Netw Model Anal Health Inform Bioinforma 7, 2 (2018). https://doi.org/10.1007/s13721-017-0162-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-017-0162-9

Keywords

Navigation