Skip to main content

Advertisement

Log in

Nutritional Metabolomics in Cancer Epidemiology: Current Trends, Challenges, and Future Directions

  • Cancer (MF Leitzmann, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

A Correction to this article was published on 13 June 2019

This article has been updated

Abstract

Purpose of Review

Metabolomics offers several opportunities for advancement in nutritional cancer epidemiology; however, numerous research gaps and challenges remain. This narrative review summarizes current research, challenges, and future directions for epidemiologic studies of nutritional metabolomics and cancer.

Recent Findings

Although many studies have used metabolomics to investigate either dietary exposures or cancer, few studies have explicitly investigated diet-cancer relationships using metabolomics. Most studies have been relatively small (≤ ~ 250 cases) or have assessed a limited number of nutritional metabolites (e.g., coffee or alcohol-related metabolites).

Summary

Nutritional metabolomic investigations of cancer face several challenges in study design; biospecimen selection, handling, and processing; diet and metabolite measurement; statistical analyses; and data sharing and synthesis. More metabolomics studies linking dietary exposures to cancer risk, prognosis, and survival are needed, as are biomarker validation studies, longitudinal analyses, and methodological studies. Despite the remaining challenges, metabolomics offers a promising avenue for future dietary cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 13 June 2019

    The original version of this article was revised: “The article was published with errors on text as the author's corrections were misinterpreted.”

Abbreviations

COMETS:

Consortium of METabolomics Studies

FoodBAll:

Food Biomarkers Alliance

GC-MS:

Gas chromatography–mass spectrometry

LC-MS:

Liquid chromatography–mass spectrometry

NMR:

Nuclear magnetic resonance spectroscopy

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Cancer Research Fund/American Institute for Cancer Research. Diet, nutrition, physical activity and cancer: a global perspective [Internet]. 2018 [cited 2019 Jan 4]. (Continuous Update Project Expert Report). Available from: dietandcancerreport.org.

  2. Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004;7(1A):187–200.

    PubMed  Google Scholar 

  3. Mayne ST, Playdon MC, Rock CL. Diet, nutrition, and cancer: past, present and future. Nat Rev Clin Oncol. 2016;13(8):504–15.

    PubMed  Google Scholar 

  4. Hernán MA, Hernández-Díaz S, Robins JM. Randomized trials analyzed as observational studies. Ann Intern Med. 2013;159(8):560-2.

  5. National Institutes of Health (NIH) Nutrition Research Task Force. Strategic Plan for NIH Nutrition Research [Internet]: NIH; 2019. [cited 2019 Jan 6]. Available from: https://www.niddk.nih.gov/about-niddk/strategic-plans-reports/strategic-plan-nih-nutrition-research

  6. •• Gibbons H, Brennan L. Metabolomics as a tool in the identification of dietary biomarkers. Proc Nutr Soc. 2017;76(1):42–53 This paper reviews current metabolomic studies of dietary biomarkers, including acute intervention studies, cohort studies, and studies investigating dietary patterns.

    PubMed  Google Scholar 

  7. •• Dragsted LO, Gao Q, Scalbert A, Vergères G, Kolehmainen M, Manach C, et al. Validation of bieomarkers of food intake—critical assessment of candidate biomarkers. Genes Nutr. 2018;13:14.

  8. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455(7216):1054–6.

    CAS  PubMed  Google Scholar 

  9. Grosso G, Bella F, Godos J, Sciacca S, Del Rio D, Ray S, et al. Possible role of diet in cancer: systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr Rev. 2017;75(6):405–19.

    PubMed  Google Scholar 

  10. Srivastava A, Creek DJ. Discovery and validation of clinical biomarkers of cancer: a review combining metabolomics and proteomics. Proteomics.2019;19(10):e1700448.

    Google Scholar 

  11. Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut. 2018;67(6):1168–80.

    CAS  PubMed  Google Scholar 

  12. Armitage EG, Barbas C. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal. 2014;87:1–11.

    CAS  PubMed  Google Scholar 

  13. •• Liesenfeld DB, Habermann N, Owen RW, Scalbert A, Ulrich CM. Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2013;22(12):2182–201 The authors conducted a comprehensive literature review of studies using mass-spectrometry-based metabolomics in human cancer research, synthesizing information from 106 studies and 21 different cancers.

    CAS  Google Scholar 

  14. Beger RD. A review of applications of metabolomics in cancer. Metabolites. 2013;3(3):552–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S, et al. Bioinformatics tools for cancer metabolomics. Metabolomics. 2011;7(3):329–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(2):431–40.

    CAS  Google Scholar 

  17. Collins C, McNamara AE, Brennan L. Role of metabolomics in identification of biomarkers related to food intake. Proc Nutr Soc. 2019;78(2):189-196.

    CAS  PubMed  Google Scholar 

  18. • Guasch-Ferré M, Bhupathiraju SN, Hu FB. Use of metabolomics in improving assessment of dietary intake. Clin Chem. 2018;64(1):82–98 This paper reviews measurement techniques, study design, and statistical approaches in nutritional metabolomic studies, with a literature review of associations between dietary patterns and metabolite profiles.

    PubMed  Google Scholar 

  19. O’Gorman A, Brennan L. The role of metabolomics in determination of new dietary biomarkers. Proc Nutr Soc. 2017;76(3):295–302.

    PubMed  Google Scholar 

  20. Brouwer-Brolsma EM, Brennan L, Drevon CA, van Kranen H, Manach C, Dragsted LO, et al. Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proc Nutr Soc. 2017;76(4):619–27.

    PubMed  Google Scholar 

  21. Brennan L. Metabolomics in nutrition research-a powerful window into nutritional metabolism. Essays Biochem. 2016;60(5):451–8.

    PubMed  Google Scholar 

  22. •• Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, Draper J, et al. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99(6):1286–308 The authors discuss applications of metabolomics to the food metabolome, including a literature review of dietary metabolomics studies.

    CAS  PubMed  Google Scholar 

  23. Jones DP, Park Y, Ziegler TR. Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr. 2012;32:183–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Tzoulaki I, Ebbels TMD, Valdes A, Elliott P, Ioannidis JPA. Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies. Am J Epidemiol. 2014;180(2):129–39 This narrative review discusses the use of metabolomic profiling techniques in epidemiologic research, including a critical discussion of methodological and analytic challenges.

    PubMed  Google Scholar 

  25. Rattray NJW, Deziel NC, Wallach JD, Khan SA, Vasiliou V, Ioannidis JPA, et al. Beyond genomics: understanding exposotypes through metabolomics. Hum Genomics. 2018;12(1):4.

  26. Alonso A, Marsal S, Julià A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23.

  27. Ramautar R, Somsen GW, de Jong GJ. CE-MS for metabolomics: developments and applications in the period 2014-2016. Electrophoresis. 2017;38(1):190–202.

    CAS  PubMed  Google Scholar 

  28. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bictash M, Ebbels TM, Chan Q, Loo RL, Yap IKS, Brown IJ, et al. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol. 2010;63(9):970–9.

    PubMed  PubMed Central  Google Scholar 

  30. •• Gao Q, Praticò G, Scalbert A, Vergères G, Kolehmainen M, Manach C, et al. A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr. 2017;12:34.

  31. Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted metabolomics. Curr Protoc Mol Biol. 2012; CHAPTER:Unit30.2.

  32. •• Dragsted LO, Gao Q, Praticò G, Manach C, Wishart DS, Scalbert A, et al. Dietary and health biomarkers—time for an update. Genes Nutr. 2017;12:24.

  33. Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet. 2009;125(5–6):507–25.

    PubMed  Google Scholar 

  34. •• The Food Biomarkers Alliance (FoodBAll) [Internet]. 2017 [cited 2019 Jan 15]. Available from: http://foodmetabolome.org/. The Food Biomarkers Alliance website offers a variety of resources for nutritional metabolomic studies, including summaries of current knowledge, tools, resources, and guidelines.

  35. Lu Y, Zou L, Su J, Tai ES, Whitton C, van DRM, et al. Meat and seafood consumption in relation to plasma metabolic profiles in a Chinese population: a combined untargeted and targeted metabolomics study. Nutrients. 2017;9(7).

    PubMed Central  Google Scholar 

  36. Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, et al. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr. 2017;105(3):600–8.

    CAS  PubMed  Google Scholar 

  37. Van Roekel EH, Trijsburg L, Assi N, Carayol M, Achaintre D, Murphy N, et al. Circulating metabolites associated with alcohol intake in the European Prospective Investigation into Cancer and Nutrition cohort. Nutrients. 2018;10(5):654.

    PubMed Central  Google Scholar 

  38. Pallister T, Haller T, Thorand B, Altmaier E, Cassidy A, Martin T, et al. Metabolites of milk intake: a metabolomic approach in UK twins with findings replicated in two European cohorts. Eur J Nutr. 2017;56(7):2379–91.

    CAS  PubMed  Google Scholar 

  39. Beckmann M, Joosen AM, Clarke MM, Mugridge O, Frost G, Engel B, et al. Changes in the human plasma and urinary metabolome associated with acute dietary exposure to sucrose and the identification of potential biomarkers of sucrose intake. Mol Nutr Food Res. 2016;60(2):444–57.

    CAS  PubMed  Google Scholar 

  40. Edmands WM, Ferrari P, Rothwell JA, Rinaldi S, Slimani N, Barupal DK, et al. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr. 2015;102(4):905–13.

    CAS  PubMed  Google Scholar 

  41. Johansson-Persson A, Barri T, Ulmius M, Onning G, Dragsted LO. LC-QTOF/MS metabolomic profiles in human plasma after a 5-week high dietary fiber intake. Anal Bioanal Chem. 2013;405(14):4799–809.

    CAS  PubMed  Google Scholar 

  42. Wang Y, Gapstur SM, Carter BD, Hartman TJ, Stevens VL, Gaudet MM, et al. Untargeted metabolomics identifies novel potential biomarkers of habitual food intake in a cross-sectional study of postmenopausal women. J Nutr. 2018;148(6):932–43.

    PubMed  Google Scholar 

  43. Menni C. Lessons on dietary biomarkers from twin studies. Proc Nutr Soc. 2017;76(3):303–7.

    PubMed  Google Scholar 

  44. Guenther PM, Casavale KO, Reedy J, Kirkpatrick SI, Hiza HAB, Kuczynski KJ, et al. Update of the Healthy Eating Index: HEI-2010. J Acad Nutr Diet. 2013;113(4):569–80.

    PubMed  Google Scholar 

  45. Trichopoulou A, Orfanos P, Norat T, Bueno-de-Mesquita B, Ocké MC, Peeters PHM, et al. Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ. 2005;330(7498):991.

    PubMed  PubMed Central  Google Scholar 

  46. Lu P-Y, Shu L, Shen S-S, Chen X-J, Zhang X-Y. Dietary patterns and pancreatic cancer risk: a meta-analysis. Nutrients. 2017;9(1):38.

    PubMed Central  Google Scholar 

  47. Zheng J, Guinter MA, Merchant AT, Wirth MD, Zhang J, Stolzenberg-Solomon RZ, et al. Dietary patterns and risk of pancreatic cancer: a systematic review. Nutr Rev. 2017;75(11):883–908.

    PubMed  PubMed Central  Google Scholar 

  48. Rådjursöga M, Lindqvist HM, Pedersen A, Karlsson BG, Malmodin D, Ellegård L, et al. Nutritional metabolomics: postprandial response of meals relating to vegan, lacto-ovo vegetarian, and omnivore diets. Nutrients. 2018;10(8):1063.

    PubMed Central  Google Scholar 

  49. Ginos BNR, Navarro SL, Schwarz Y, Gu H, Wang D, Randolph TW, et al. Circulating bile acids in healthy adults respond differently to a dietary pattern characterized by whole grains, legumes and fruits and vegetables compared to a diet high in refined grains and added sugars: a randomized, controlled, crossover feeding study. Metabolism. 2018;83:197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Toledo E, Wang DD, Ruiz-Canela M, Clish CB, Razquin C, Zheng Y, et al. Plasma lipidomic profiles and cardiovascular events in a randomized intervention trial with the Mediterranean diet. Am J Clin Nutr. 2017;106(4):973–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Khakimov B, Poulsen SK, Savorani F, Acar E, Gürdeniz G, Larsen TM, et al. New Nordic diet versus average Danish diet: a randomized controlled trial revealed healthy long-term effects of the new Nordic diet by GC-MS blood plasma metabolomics. J Proteome Res. 2016;15(6):1939–54.

    CAS  PubMed  Google Scholar 

  52. Vázquez-Fresno R, Llorach R, Urpi-Sarda M, Lupianez-Barbero A, Estruch R, Corella D, et al. Metabolomic pattern analysis after Mediterranean diet intervention in a nondiabetic population: a 1- and 3-year follow-up in the PREDIMED study. J Proteome Res. 2015;14(1):531–40.

    PubMed  Google Scholar 

  53. Bondia-Pons I, Martinez JA, de la Iglesia R, Lopez-Legarrea P, Poutanen K, Hanhineva K, et al. Effects of short- and long-term Mediterranean-based dietary treatment on plasma LC-QTOF/MS metabolic profiling of subjects with metabolic syndrome features: the Metabolic Syndrome Reduction in Navarra (RESMENA) randomized controlled trial. Mol Nutr Food Res. 2015;59(4):711–28.

    CAS  PubMed  Google Scholar 

  54. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. The metabolic signature associated with the Western dietary pattern: a cross-sectional study. Nutr J. 2013;12:158.

    PubMed  PubMed Central  Google Scholar 

  55. Floegel A, von Ruesten A, Drogan D, Schulze MB, Prehn C, Adamski J, et al. Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam. Eur J Clin Nutr. 2013;67(10):1100–8.

    CAS  PubMed  Google Scholar 

  56. Andersen M-BS, Rinnan Å, Manach C, Poulsen SK, Pujos-Guillot E, Larsen TM, et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J Proteome Res. 2014;13(3):1405–18.

    CAS  PubMed  Google Scholar 

  57. • Playdon MC, Moore SC, Derkach A, Reedy J, Subar AF, Sampson JN, et al. Identifying biomarkers of dietary patterns by using metabolomics. Am J Clin Nutr. 2017;105(2):450–65 The authors evaluated associations between four dietary pattern indices and metabolites in 1336 male Finnish smokers, finding significant correlations between diet indices and metabolite profiles.

    CAS  PubMed  Google Scholar 

  58. Schmidt JA, Rinaldi S, Ferrari P, Carayol M, Achaintre D, Scalbert A, et al. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort. Am J Clin Nutr. 2015;102(6):1518–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Guertin KA, Moore SC, Sampson JN, Huang W-Y, Xiao Q, Stolzenberg-Solomon RZ, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr. 2014;100(1):208–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhupathiraju SN, Guasch-Ferré M, Gadgil MD, Newgard CB, Bain JR, Muehlbauer MJ, et al. Dietary patterns among Asian Indians living in the United States have distinct metabolomic profiles that are associated with cardiometabolic risk. J Nutr. 2018;148(7):1150–9.

    PubMed  PubMed Central  Google Scholar 

  61. • Garcia-Perez I, Posma JM, Gibson R, Chambers ES, Hansen TH, Vestergaard H, et al. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 2017;5(3):184–95 The authors identified urinary metabolomic signatures associated with different levels of adherence to healthy eating guidelines in a randomized, controlled, feeding study and then validated these signatures in two free-living populations.

    PubMed  PubMed Central  Google Scholar 

  62. O’Keefe SJD. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13(12):691–706.

    PubMed  PubMed Central  Google Scholar 

  63. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 2019;15(5):261-273.

    CAS  PubMed  Google Scholar 

  64. Nistal E, Fernández-Fernández N, Vivas S, Olcoz JL. Factors determining colorectal cancer: the role of the intestinal microbiota. Front Oncol. 2015;5:220.

    PubMed  PubMed Central  Google Scholar 

  65. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Derkach A, Sampson J, Joseph J, Playdon MC, Stolzenberg-Solomon RZ. Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study. Am J Clin Nutr. 2017;106(4):1131–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Institute of Medicine (US) Food Forum. The human microbiome, diet, and health: workshop summary. In: Influence of the microbiome on the metabolism of diet and dietary components. Washington, DC: National Academies Press (US); 2013.

  68. •• Playdon MC, Ziegler RG, Sampson JN, Stolzenberg-Solomon R, Thompson HJ, Irwin ML, et al. Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin Nutr. 2017;106(2):637–49 The authors conducted, to our knowledge, the largest nutritional metabolomic study of cancer to date using untargeted nutritional metabolomics and self-reported dietary component/pattern information to investigate dietary breast cancer risk factors in a nested case-control study.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chadeau-Hyam M, Athersuch TJ, Keun HC, De Iorio M, Ebbels TMD, Jenab M, et al. Meeting-in-the-middle using metabolic profiling - a strategy for the identification of intermediate biomarkers in cohort studies. Biomark Biochem Indic Expo Response Susceptibility Chem. 2011;16(1):83–8.

    CAS  Google Scholar 

  70. Troche JR, Mayne ST, Freedman ND, Shebl FM, Guertin KA, Cross AJ, et al. Alcohol consumption-related metabolites in relation to colorectal cancer and adenoma: two case-control studies using serum biomarkers. PLoS One. 2016;11(3):e0150962.

    PubMed  PubMed Central  Google Scholar 

  71. Guertin KA, Loftfield E, Boca SM, Sampson JN, Moore SC, Xiao Q, et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am J Clin Nutr. 2015;101(5):1000–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Assi N, Thomas DC, Leitzmann M, Stepien M, Chajès V, Philip T, et al. Are metabolic signatures mediating the relationship between lifestyle factors and hepatocellular carcinoma risk? Results from a nested case–control study in EPIC. Cancer Epidemiol Prev Biomark. 2018;27(5):531–40.

    Google Scholar 

  73. Grobbee DE, Rimm EB, Giovannucci E, Colditz G, Stampfer M, Willett W. Coffee, caffeine, and cardiovascular disease in men. N Engl J Med. 1990;323(15):1026–32.

    CAS  PubMed  Google Scholar 

  74. Vineis P, Perera F. Molecular epidemiology and biomarkers in etiologic cancer research: the new in light of the old. Cancer Epidemiol Biomark Prev. 2007;16(10):1954–65.

    CAS  Google Scholar 

  75. Wang W, Feng B, Li X, Yin P, Gao P, Zhao X, et al. Urinary metabolic profiling of colorectal carcinoma based on online affinity solid phase extraction-high performance liquid chromatography and ultra performance liquid chromatography-mass spectrometry. Mol BioSyst. 2010;6(10):1947–55.

    CAS  PubMed  Google Scholar 

  76. O’Sullivan A, Gibney MJ, Brennan L. Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am J Clin Nutr. 2011;93(2):314–21.

    PubMed  Google Scholar 

  77. Esko T, Hirschhorn JN, Feldman HA, Hsu Y-HH, Deik AA, Clish CB, et al. Metabolomic profiles as reliable biomarkers of dietary composition. Am J Clin Nutr. 2017;105(3):547–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kristensen M, Pelletier X, Ross AB, High TFA. Rate of non-compliance confounds the study of whole grains and weight maintenance in a randomised intervention trial—the case for greater use of dietary biomarkers in nutrition intervention studies. Nutrients. 2017;9(1):55.

    PubMed Central  Google Scholar 

  79. Blaise BJ. Data-driven sample size determination for metabolic phenotyping studies. Anal Chem. 2013;85(19):8943–50.

    CAS  PubMed  Google Scholar 

  80. Nyamundanda G, Gormley IC, Fan Y, Gallagher WM, Brennan L. MetSizeR: selecting the optimal sample size for metabolomic studies using an analysis based approach. BMC Bioinformatics. 2013;14:338.

    PubMed  PubMed Central  Google Scholar 

  81. Blaise BJ, Correia G, Tin A, Young JH, Vergnaud A-C, Lewis M, et al. Power analysis and sample size determination in metabolic phenotyping. Anal Chem. 2016;88(10):5179–88.

    CAS  PubMed  Google Scholar 

  82. • Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW, et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomark Prev. 2013;22(4):631–40 This paper evaluates the technical and intra-individual reliability of a large set of metabolites, with discussion of implications for requisite sample sizes and detectable relative risks in epidemiologic studies.

    CAS  Google Scholar 

  83. •• Praticò G, Gao Q, Scalbert A, Vergères G, Kolehmainen M, Manach C, et al. Guidelines for biomarker of food intake reviews (BFIRev): how to conduct an extensive literature search for biomarker of food intake discovery. Genes Nutr. 2018;13(3) This paper provides guidelines for conducting literature reviews for biomarkers of food intake.

  84. Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’hiri N, García-Lobato P, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database J Biol Databases Curation. 2013;2013:bat070.

    Google Scholar 

  85. Lindon JC, Nicholson JK, Holmes E, Keun HC, Craig A, Pearce JTM, et al. Summary recommendations for standardization and reporting of metabolic analyses. Nat Biotechnol. 2005;23(7):833–8.

    CAS  PubMed  Google Scholar 

  86. MSI Board Members, Sansone S-A, Fan T, Goodacre R, Griffin JL, Hardy NW, et al. The metabolomics standards initiative. Nat Biotechnol. 2007;25(8):846–8.

    Google Scholar 

  87. • Spicer RA, Salek R, Steinbeck C. Compliance with minimum information guidelines in public metabolomics repositories. Sci Data. 2017;4:170138. The authors reviewed 339 publicly available metabolomics datasets and quantified their compliance with the Metabolomics Standards Initiative guidelines.

  88. Considine EC, Thomas G, Boulesteix AL, Khashan AS, Kenny LC. Critical review of reporting of the data analysis step in metabolomics. Metabolomics. 2018;14(1):7.

    Google Scholar 

  89. Galaxy Community Hub [Internet]. [cited 2019 Mar 7]. Available from: https://galaxyproject.org/

  90. Weber RJM, Lawson TN, Salek RM, Ebbels TMD, Glen RC, Goodacre R, et al. Computational tools and workflows in metabolomics: an international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics. 2017;13(2):12.

  91. Giacomoni F, Le Corguillé G, Monsoor M, Landi M, Pericard P, Pétéra M, et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics. 2015;31(9):1493–5.

    CAS  PubMed  Google Scholar 

  92. Davidson RL, Weber RJM, Liu H, Sharma-Oates A, Viant MR. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience. 2016;5(1):10.

    PubMed  PubMed Central  Google Scholar 

  93. Scalbert A, Rothwell J, Neveu V, Rahkonen K. Chapter 15: the food metabolome and dietary biomarkers. In: Schoeller DA, Westerterp-Plantenga MS, editors. Advances in the assessment of dietary intake. Boca Raton: CRC Press; 2017.

    Google Scholar 

  94. Paglia G, Del Greco FM, Sigurdsson BB, Rainer J, Volani C, Hicks AA, et al. Influence of collection tubes during quantitative targeted metabolomics studies in human blood samples. Clin Chim Acta Int J Clin Chem. 2018;486:320–8.

    CAS  Google Scholar 

  95. Yu Z, Kastenmüller G, He Y, Belcredi P, Möller G, Prehn C, et al. Differences between human plasma and serum metabolite profiles. PLoS One. 2011;6(7):e21230.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. • Playdon MC, Sampson JN, Cross AJ, Sinha R, Guertin KA, Moy KA, et al. Comparing metabolite profiles of habitual diet in serum and urine. Am J Clin Nutr. 2016;104(3):776–89 The authors compared metabolite profiles of habitual diet measured in serum versus urine, finding that candidate metabolite biomarkers are identifiable and in both sample types and that the performance of multiple-metabolite dietary intake prediction is similar in serum and urine.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407(17):4879–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. • Townsend MK, Clish CB, Kraft P, Wu C, Souza AL, Deik AA, et al. Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. Clin Chem. 2013;59(11):1657–67 Using plasma metabolites, the authors assess interassay reproducibility, reproducibility with delayed processing, and within-person reproducibility over time, finding relatively high reproducibility for most, but not all, metabolites.

    CAS  PubMed  Google Scholar 

  99. Yin P, Peter A, Franken H, Zhao X, Neukamm SS, Rosenbaum L, et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin Chem. 2013;59(5):833–45.

    CAS  PubMed  Google Scholar 

  100. Townsend MK, Bao Y, Poole EM, Bertrand KA, Kraft P, Wolpin BM, et al. Impact of pre-analytic blood sample collection factors on metabolomics. Cancer Epidemiol Biomark Prev. 2016;25(5):823–9.

    CAS  Google Scholar 

  101. Jobard E, Trédan O, Postoly D, André F, Martin A-L, Elena-Herrmann B, et al. A systematic evaluation of blood serum and plasma pre-analytics for metabolomics cohort studies. Int J Mol Sci. 2016;17(12):2035.

    PubMed Central  Google Scholar 

  102. Pinto J, Domingues MRM, Galhano E, Pita C, Almeida M do C, Carreira IM, et al. Human plasma stability during handling and storage: impact on NMR metabolomics. Analyst. 2014;139(5):1168–77.

    CAS  PubMed  Google Scholar 

  103. Cruickshank-Quinn C, Zheng LK, Quinn K, Bowler R, Reisdorph R, Reisdorph N. Impact of blood collection tubes and sample handling time on serum and plasma metabolome and lipidome. Metabolites. 2018;8(4):88.

    PubMed Central  Google Scholar 

  104. Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, et al. Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem. 2006;78(13):4307–18.

    CAS  PubMed  Google Scholar 

  105. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137(2):293–300.

    CAS  PubMed  Google Scholar 

  106. Beger RD, Dunn WB, Bandukwala A, Bethan B, Broadhurst D, Clish CB, et al. Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics Off J Metabolomic Soc. 2019;15(1):4.

    Google Scholar 

  107. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1):230S–42S.

    CAS  PubMed  Google Scholar 

  108. Söderholm PP, Koskela AH, Lundin JE, Tikkanen MJ, Adlercreutz HC. Plasma pharmacokinetics of alkylresorcinol metabolites: new candidate biomarkers for whole-grain rye and wheat intake. Am J Clin Nutr. 2009;90(5):1167–71.

    PubMed  Google Scholar 

  109. Gürdeniz G, Kristensen M, Skov T, Dragsted LO. The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats. Metabolites. 2012;2(1):77–99.

    PubMed  PubMed Central  Google Scholar 

  110. De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, et al. Normalizing and integrating metabolomics data. Anal Chem. 2012;84(24):10768–76.

    PubMed  Google Scholar 

  111. Chadeau-Hyam M, Campanella G, Jombart T, Bottolo L, Portengen L, Vineis P, et al. Deciphering the complex: methodological overview of statistical models to derive OMICS-based biomarkers. Environ Mol Mutagen. 2013;54(7):542–57.

    CAS  PubMed  Google Scholar 

  112. De Livera AM, Olshansky M, Speed TP. Statistical analysis of metabolomics data. Methods Mol Biol Clifton NJ. 2013;1055:291–307.

    Google Scholar 

  113. Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD. Analytical and statistical approaches to metabolomics research. J Sep Sci. 2009;32(13):2183–99.

    CAS  PubMed  Google Scholar 

  114. Korman A, Oh A, Raskind A, Banks D. Statistical methods in metabolomics. Methods Mol Biol Clifton NJ. 2012;856:381–413.

    CAS  Google Scholar 

  115. Want E, Masson P. Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol Biol Clifton NJ. 2011;708:277–98.

    CAS  Google Scholar 

  116. Ebbels TMD, Lindon JC, Coen M. Processing and modeling of nuclear magnetic resonance (NMR) metabolic profiles. Methods Mol Biol Clifton NJ. 2011;708:365–88.

    CAS  Google Scholar 

  117. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142.

    PubMed  PubMed Central  Google Scholar 

  118. Do KT, Wahl S, Raffler J, Molnos S, Laimighofer M, Adamski J, et al. Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies. Metabolomics [Internet]. 2018;14(10):128.

  119. Bennette C, Vickers A. Against quantiles: categorization of continuous variables in epidemiologic research, and its discontents. BMC Med Res Methodol. 2012;12:21.

    PubMed  PubMed Central  Google Scholar 

  120. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med. 1989;8(5):551–61.

    CAS  PubMed  Google Scholar 

  121. Chadeau-Hyam M, Ebbels TMD, Brown IJ, Chan Q, Stamler J, Huang CC, et al. Metabolic profiling and the metabolome-wide association study: significance level for biomarker identification. J Proteome Res. 2010;9(9):4620–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. •• Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C. Navigating freely-available software tools for metabolomics analysis. Metabolomics Off J Metabolomic Soc. 2017;13(9):106 This paper and the related Wiki site ( https://raspicer.github.io/MetabolomicsTools/ ) provide a comprehensive list of available metabolomics software and tools.

    Google Scholar 

  123. Misra BB, Mohapatra S. Tools and resources for metabolomics research community: a 2017-2018 update. Electrophoresis. 2019;40(2):227–46.

    CAS  PubMed  Google Scholar 

  124. Misra BB. New tools and resources in metabolomics: 2016-2017. Electrophoresis. 2018;39(7):909–23.

    CAS  PubMed  Google Scholar 

  125. Misra BB, Fahrmann JF, Grapov D. Review of emerging metabolomic tools and resources: 2015-2016. Electrophoresis. 2017;38(18):2257–74.

    CAS  PubMed  Google Scholar 

  126. Misra BB, van der Hooft JJJ. Updates in metabolomics tools and resources: 2014-2015. Electrophoresis. 2016;37(1):86–110.

    CAS  PubMed  Google Scholar 

  127. Metabolomics Society [Internet]. [cited 2019 Jan 3]. Available from: http://metabolomicssociety.org

  128. Wishart D. Systems biology resources arising from the human metabolome project. In: Suhre K, editor. Genetics meets metabolomics: from experiment to systems biology [Internet]. New York: Springer New York; 2012. p. 157–75. [cited 2019 Feb 12] Available from. https://doi.org/10.1007/978-1-4614-1689-0_11.

    Chapter  Google Scholar 

  129. Neveu V, Moussy A, Rouaix H, Wedekind R, Pon A, Knox C, et al. Exposome-explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 2017;45(D1):D979–84.

    CAS  PubMed  Google Scholar 

  130. PhytoHub [Internet]. [cited 2019 Jan 4]. Available from: http://phytohub.eu

  131. Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, Lee J, et al. YMDB: the yeast metabolome database. Nucleic Acids Res. 2012;40(Database issue):D815–20.

    CAS  PubMed  Google Scholar 

  132. Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA, et al. YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 2017;45(D1):D440–5.

    CAS  PubMed  Google Scholar 

  133. Food Compound Exchange (FoodComEx) [Internet]. [cited 2019 Jan 4]. Available from: http://foodcomex.org/

  134. Yu B, Zanetti KA, Temprosa M, Albanes D, Appel N, Barrera CB, et al. The consortium of metabolomics studies (COMETS): metabolomics in 47 prospective cohort studies. Am J Epidemiol. 2019.

  135. •• COnsortium of METabolomics Studies [Internet]. [cited 2019 Jan 20]. Available from: https://epi.grants.cancer.gov/comets/. The COMETS consortium offers a platform for collaboration among prospective cohort studies that perform metabolomic profiling.

  136. Metabolomics Quality Assurance and Quality Control Consortium (mQACC) [Internet]. [cited 2019 Jan 4]. Available from: https://epi.grants.cancer.gov/Consortia/mQACC/

  137. Salek RM, Neumann S, Schober D, Hummel J, Billiau K, Kopka J, et al. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics. 2015;11(6):1587–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. MetabolomeXchange [Internet]. [cited 2019 Jan 4]. Available from: http://www.metabolomexchange.org/site/

  139. The Metabolomics Workbench [Internet]. [cited 2019 Jan 20]. Available from: http://www.metabolomicsworkbench.org/

  140. Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, et al. MetaboLights--an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013;41(Database issue):D781–6.

    CAS  PubMed  Google Scholar 

  141. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–94.

    CAS  PubMed  Google Scholar 

  142. Sun Y, Kim JH, Vangipuram K, Hayes DF, Smith EML, Yeomans L, et al. Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat. 2018;171(3):657–66.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma E. McGee.

Ethics declarations

Conflict of Interest

Emma E. McGee, Rama Kiblawi, Mary C. Playdon, and A. Heather Eliassen declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGee, E.E., Kiblawi, R., Playdon, M.C. et al. Nutritional Metabolomics in Cancer Epidemiology: Current Trends, Challenges, and Future Directions. Curr Nutr Rep 8, 187–201 (2019). https://doi.org/10.1007/s13668-019-00279-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-019-00279-z

Keywords

Navigation