Skip to main content

Advertisement

Log in

Consensus on Molecular Testing in Lung Cancer

  • Lung Cancer (R Mudad, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Molecular testing for lung cancer has evolved dramatically over the last decade, driven primarily by the rapid development of targeted therapies. Initial testing was intended to make appropriate therapeutic choices with primary single gene testing and has evolved into larger sensitive and specific panels to evaluate multiple genes.

Recent Findings

The wide array of technologies and an increasing number of targeted therapies have resulted in increasingly complex management algorithms. In this article, we review the current guidelines, briefly discuss individual targets, and introduce some of the complexities associated with genomic testing.

Summary

We generally recommend next generation sequencing (NGS) panel testing when available and discuss other reasonable alternatives. Circulating tumor assays are commonly utilized, particularly when tissue is unavailable for genomic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lindeman NI, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors. J Thorac Oncol. 2018;Volume 13(Issue 3):323–58. https://doi.org/10.1016/j.jtho.2017.12.001. This publication details clinical trial data which supports current consensus guidelines and also provides an outlook for testing in the coming years.

    Article  Google Scholar 

  2. NCCN Clinical Practice Guidelines in Oncology https://www.nccn.org/professionals/physician_gls/pdf/nscl_blocks.pdf [Accessed 11th Mar 2018].

  3. Genetics Home Reference, US National Library of Medicine https://ghr.nlm.nih.gov/gene/EGFR [cited 11th Mar 2018].

  4. Universal Protein Resource. https://www.uniprot.org/uniprot/P00533 [Accessed cited 11th Mar 2018].

  5. Yasuda H, Park E, Yun C-H, Sng NJ, Lucena-Araujo AR, Yeo WL, et al. Structural, biochemical and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013;5(216):216ra177. https://doi.org/10.1126/scitranslmed.3007205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wu S-G, Liu Y-N, Tsai M-F, Chang YL, Yu CJ, Yang PC, et al. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget. 2016;7(11):12404–13. https://doi.org/10.18632/oncotarget.7189.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tanaka K, Nosaki K, Otsubo K, Azuma K, Sakata S, Ouchi H, et al. Acquisition of the T790M resistance mutation during afatinib treatment in EGFR tyrosine kinase inhibitor-naïve patients with non-small cell lung cancer harboring EGFR mutations. Oncotarget. 2017;8(40):68123–30. https://doi.org/10.18632/oncotarget.19243.

    Article  PubMed  PubMed Central  Google Scholar 

  8. • Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res: Off J Am Assoc Cancer Res. 2013;19(8):2240–7. https://doi.org/10.1158/1078-0432.CCR-12-2246. This study explores the mechanisms of evolving genomic-based resistance to initial treatment with erlotinib and gefitinib, establishing that T790M mutations are one of the most common reasons for resistance to initial therapy.

    Article  CAS  Google Scholar 

  9. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. https://doi.org/10.1126/scitranslmed.3002003.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40. https://doi.org/10.1056/NEJMoa1612674. This study compares the efficacy of osimertinib versus standard platinum-pemetrexed therapy in T790M-positive lung cancer and demonstrated significant benefit in progression-free survival as well as reduced occurence of adverse reactions in the osimertinib arm.

    Article  PubMed  CAS  Google Scholar 

  11. • Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25. https://doi.org/10.1056/NEJMoa1713137. This study compared osimertinib to standard first generation EGFR TKIs in EGFR mutation-positive (exon 19 deletion or L858R) NSCLC patients. This study demonstrated a significant increase in progression-free survival accompanied by improved tolerability in the osimertinib arm.

    Article  PubMed  Google Scholar 

  12. Wang S, Tsui ST, Liu C, Song Y, Liu D. EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer. J Hematol Oncol. 2016;9(1):59. https://doi.org/10.1186/s13045-016-0290-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Niederst MJ, Hu H, Mulvey HE, Lockerman EL, Garcia AR, Piotrowska Z, et al. The allelic context of the C797S mutation acquired upon treatment with third generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21(17):3924–33. https://doi.org/10.1158/1078-0432.CCR-15-0560.

    Article  CAS  Google Scholar 

  14. Ruggiero JE, Rughani J, Neiman J, Swanson S, Revol C, Green RJ. Real-world concordance of clinical practice with ASCO and NCCN guidelines for EGFR/ALK testing in aNSCLC. J Clin Oncol. 2017;35(8_suppl):212. https://doi.org/10.1200/JCO.2017.35.8_suppl.212.

    Article  Google Scholar 

  15. Enewold L, Thomas A. Real-world patterns of EGFR testing and treatment with erlotinib for non-small cell lung cancer in the United States. PLoS One. 2016;11(6):e0156728. https://doi.org/10.1371/journal.pone.0156728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Camidge DR, Bang Y-J, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. The lancet oncology. 2012;13(10):1011–9. https://doi.org/10.1016/S1470-2045(12)70344-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–38. https://doi.org/10.1056/NEJMoa1704795.

    Article  PubMed  CAS  Google Scholar 

  19. Lin JJ, Zhu VW, Yoda S, et al. Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer. J Clin Oncol. 2018; JCO2017762294. https://doi.org/10.1200/JCO.2017.76.2294.

  20. Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S, Brooun A, et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N Engl J Med. 2016;374(1):54–61. https://doi.org/10.1056/NEJMoa1508887.

    Article  PubMed  CAS  Google Scholar 

  21. Genetics Home Reference, US National Library of Medicine https://ghr.nlm.nih.gov/gene/KRAS [Accessed 11th Mar 2016].

  22. Shaw AT, Solomon BJ. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2015;372(7):683–4. https://doi.org/10.1056/NEJMc1415359.

    Article  PubMed  Google Scholar 

  23. Genetics Home Reference, US National Library of Medicine https://ghr.nlm.nih.gov/gene/MET [Accessed 11th Mar 2018].

  24. My Cancer Genome Database. Solomon, B. 2015. MET Amplification in Non-Small Cell Lung Cancer. My Cancer Genome https://www.mycancergenome.org/content/disease/lung-cancer/met/59/ [Accessed 11th Mar 2018].

  25. Drilon AE, Ross Camidge D, Ignatius Ou S-H, Clark JW, Socinski MA, Weiss J, et al. J Clin Oncol. 2016;34(15_suppl):108.

    Article  Google Scholar 

  26. Genetics Home Reference, US National Library of Medicine https://ghr.nlm.nih.gov/gene/BRAF [Accessed 11th Mar 2018].

  27. Kinno T, Tsuta K, Shiraishi K, Mizukami T, Suzuki M, Yoshida A, et al. Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann Oncol. 2014;25(1):138–42. https://doi.org/10.1093/annonc/mdt495.

    Article  PubMed  CAS  Google Scholar 

  28. Blakely CM, Watkins TBK, Wu W, Gini B, Chabon JJ, McCoach CE, et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet. 2017;49(12):1693–704. https://doi.org/10.1038/ng.3990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Khagi Y, Goodman AM, Daniels GA, Patel SP, Sacco AG, Randall JM, et al. Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy. Clin Cancer Res. 2017;23(19):5729–36. https://doi.org/10.1158/1078-0432.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Besse B, Remon J, Lacroix L, Mezquita L, Jovelet C, Howarth K, et al. J Clin Oncol. 2017;35(15_suppl):11540.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Sands.

Ethics declarations

Conflict of Interest

Jacobs Sands declares financial connection as consulting/advisory board at Foundation Medicine, Merck, Incyte, Celgene, Astra-Zeneca, and Trovagene, outside the submitted work. Parth Shah reports no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, P., Sands, J. Consensus on Molecular Testing in Lung Cancer. Curr Pulmonol Rep 7, 49–55 (2018). https://doi.org/10.1007/s13665-018-0201-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-018-0201-8

Keywords

Navigation