Skip to main content
Log in

Algae production on pig sludge

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

This report shows that pig manure can be used for algal production in small farms. Huge pig sludge amounts produced using actual methods in large-scale pig breeding farms is a major issue due to the lack of disposal options and potential water pollution. This issue may be solved by using pig sludge for algal biofuel production. Therefore, we studied an economical method of algae production on pig sludge that can be operated on animal farms in Hungary with modest levels of investment. We analyzed four algae species, Chlorella vulgaris, Scenedesmus quadricauda, Scenedesmus dimorphus, and Arthrospira platensis, in the laboratory and C. vulgaris in outdoor conditions. The following parameters were studied: pot size, illumination, temperature, filtered versus unfiltered pig manure, water depth, aeration, CO2 enrichment, inoculums solution, fertilization level, and length of rotation period. Produced alga biomass was measured every 4 days, and the protein- and lipid content was analyzed using the method of Bradford (1976) and Erickson (1993). Our results show first that the unfiltered pig manure is not suitable for algae production due to illumination shortage. By contrast, using filtered pig manure, we found that C. vulgaris yield in 70-l indoor pots was 64% higher than in smaller pots. In a larger outdoor system, the annual dry yield of C. vulgaris reached 141–259 t/ha during 12-day-long rotation periods. Here, we demonstrate that only filtered liquid pig manure can be recommended for algae production. C. vulgaris is the most suitable alga species for use in large-scale experiments on pig sludge. Based on our outdoor experiments, the adaptation of a 12- to 14-day rotation period could be considered the most reasonable. An algae farm can therefore be operated with relative modest amount of capital, can hence address the issue of sludge management, and provide a substrate for energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai A, Stündl L, Bársony P, Jobbágy P, Herpergel Z, Fehér M, Vaszkó G (2010) Saját kísérleteink komplex gazdasági értékelése esettanulmánnyal. Összefoglaló tanulmány Témafelelős: Vaszkó Gábor. Baross Gábor Research Program, “Biomassza célú algatermesztés fejlesztése, állattartó telepi szubsztráton, gazdasági modellépítés” (ATEBIOEN, 2009–2010) c. projekt. Debrecen, pp. 1–73.

  • Barlow EWR, Boersma L, Phinney HK, Miner JR (1975) Algal growth in diluted pig waste. Agr Environ 2:339–355. doi:10.1016/0304-1131(75)90040-5

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizating the principle of protein-dye binding. Analytical Biochemistry 72(1–2):248–254

    Google Scholar 

  • Capblancq J (1982) Phytoplancton et production primaire. In: Pourriot, Capblancq, Champ, Meyer (eds) Ecologie du plancton des eaux continentales. Masson, Paris, pp 1–48

    Google Scholar 

  • De Godos I, Blanco S, García-Encina PA, Becares E, Muńoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4339. doi:10.1016/j.biortech.2009.04.016

    Article  PubMed  Google Scholar 

  • De la Noüe J, Bassères A (1989) Biotreatment of anaerobically digested swine manure with microalgae. Biol Waste 29:17–31. doi:10.1016/0269-7483(89)90100-6

    Article  Google Scholar 

  • Erickson, M.C. (1993) Lipid extraction from channel catfish muscle. Comparision of solvent systems. Journal of Food Science 58(1):84–89

    Google Scholar 

  • Fabregas J, Abalde J, Herrero C, Cabezas B, Veiga M (1984) Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture 42:207–215. doi:10.1016/0044-8486(84)90101-7

    Article  Google Scholar 

  • Fallowfield HJ, Garrett MK (1985) The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study. Agr Waste 12(12):111–136. doi:10.1016/0141-4607(85)90003-4

    Article  CAS  Google Scholar 

  • Ghezelbash F, Farboodnia T, Heidari R, Agh N (2008) Biochemical effects of different salinities and luminance on green microalgae tetraselmischuii. Res J Biol Sci 3:217–221. doi:10.3923/rjbsci.2008.217.221

    Google Scholar 

  • Golueke CG, Oswald WJ (1962) The mass culture of Porphyridium cruentum. Appl Environ Microbiol 10:102–107

    CAS  Google Scholar 

  • Gressler V, Yokoya NS, Fujii MT, Colepicolo P, FilhoJM TRP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590. doi:10.1016/j.foodchem.2009.10.028

    Article  CAS  Google Scholar 

  • Kim J, Lingaraju BP, Rheaume R, Lee JY, Siddiqui KF (2010) Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Science and Technology 15:391–396. doi:10.1016/S1007-0214(10)70078-X

    Article  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal form primary settled wastewater. Environ Pollut 89:59–66. doi:10.1016/0269-7491(94)00044-E

    Article  CAS  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresource Technology 99:8137–8142. doi:10.1016/j.biortech.2008.03.073

    Article  PubMed  CAS  Google Scholar 

  • Nábrádi A (2002) Tápanyag-gazdálkodás. In: Bai A (ed) A biomassza felhasználása. Szaktudás, Budapest, pp 30–37

    Google Scholar 

  • Ördög V (2009) Mikroalgák a mezőgazdaságban és energiatermelésben. In IV. Regionális Természettudományi Konferencia. Conference paper, Budapest, pp. 6.

  • Ördög V, Bálint P, Lovász Cs (2011) Lipid production in green algae depending on N-supply. In: Pannonian Plant Biotechnology Workshops: The Bioenergy Question: Reality or Wishful Thinking? Conference paper, Budapest, pp. 18–19.

  • Petkov G, Garcia G (2007) Which are fatty acids of the green alga Chlorella? Biochem Syst Ecol 35:281–285. doi:10.1016/j.bse.2006.10.017

    Article  CAS  Google Scholar 

  • Sevrin-Reyssac J (1998) Biotreatment of swine manure by production aquatic valuable biomasses. Agric Ecosyst Environ 68:177–186. doi:10.1016/S0167-8809(97)00070-4

    Article  CAS  Google Scholar 

  • Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2010) Protein, fatty acid and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726. doi:10.1007/s10811-010-9569-8

    Article  Google Scholar 

  • Soletto D, Binaghi L, Ferrari L, Lodi A, Carvalho JCM, Zilli M, Converti A (2008) Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem Eng J 39:369–375. doi:10.1016/j.bej.2007.10.007

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107:145–151. doi:10.1016/S0269-7491(99)00118-9

    Article  PubMed  CAS  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91. doi:10.1016/S0960-8524(02)00003-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance provided by the Baross Gábor Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Bai.

About this article

Cite this article

Bai, A., Stündl, L., Bársony, P. et al. Algae production on pig sludge. Agron. Sustain. Dev. 32, 611–618 (2012). https://doi.org/10.1007/s13593-011-0077-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0077-2

Keywords

Navigation