Skip to main content

Advertisement

Log in

Models to support cropping plan and crop rotation decisions. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Farmers must yearly allocate fields to different crops and choose crop management options. Far from being obvious, these decisions are critical because they modify farm productivity and profitability in the short and long run. To support farmers and efficiently allocate scarce resources, decision support models are developed. Decision support models are mainly based on two concepts, the cropping plan and the crop rotation decisions. These decisions concern crop choice, crop spatial distribution within the farmland and crop temporal successions over years. Decisions are at the core of the farm management. Decisions have strong impacts on resource use efficiency and on environmental processes at both farm and landscape scales. We review here more than 120 references where cropping plan and crop rotation decision concepts were incorporated into models. Our aim is to review how these two concepts have been formalised and used in agronomic, economic and land-use studies. We found that cropping plan decisions selection and design have been done using many approaches based on different objectives and handled at very different scales. The main results show that (1) cropping plan design decisions have mainly been tackled as a static concept, i.e. as if they were a single decision made only once a year or once a rotation; (2) modelling the achievement of a suitable cropping plan is often based on a single monetary criterion optimization procedure instead of a multi-criteria assessment; and (3) when considered, uncertainty of information is defined as stochastic factors or probability of occurrence, but this probability is kept static whatever the knowledge of the dynamic evolution of various constraints. We argue that cropping plan and crop rotation decisions are on the contrary dynamic processes incorporated into a succession of other planned and adaptive decisions made at annual and long-term horizons. For supporting farmers in their decisions, new cropping plan decision models will require new modelling paradigm. A promising improvement could be reached by including explicitly the simulation of the farmers' decision-making processes, based on the simulation of the decision-making processes rather than on single normative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdulkadri AO, Ajibefun IA (1998) Developing alternative farm plans for cropping system decision making. Agric Syst 56(4):431–442

    Google Scholar 

  • Annetts J, Audsley E (2002) Multiple objective linear programming for environmental farm planning. J Oper Res Soc 53(9):933–943

    Google Scholar 

  • Askari H, Cummings JT (1977) Estimating agricultural supply response with the nerlove model: a survey. Int Econ Rev 18(2):257–292

    Google Scholar 

  • Assessment ME (2005) Ecosystems and human well-being: general synthesis. Island Press, Washington, DC, 137

    Google Scholar 

  • Attonaty J-M, Chatelin M-H, Garcia F (1999) Interactive simulation modeling in farm decision-making. Comput Electron Agric 22(2–3):157–170

    Google Scholar 

  • Aubry C (2000) Une modélisation de la gestion de production dans l’exploitation agricole. Rev Fr gest 129:32–46

    Google Scholar 

  • Aubry C, Biarnes A, Maxime F, Papy F (1998a) Modélisation de l’organisation technique de la production dans l’exploitation agricole: la constitution de systèmes de culture. Etudes & Recherches sur les Systèmes Agraires et le Développement 31:25–43

    Google Scholar 

  • Aubry C, Papy F, Capillon A (1998b) Modelling decision-making processes for annual crop management. Agric Syst 56(1):45–65

    Google Scholar 

  • Audsley E (1993) Labour, machinery and cropping planning. Wageningen, The Netherlands, pp 83–88

    Google Scholar 

  • Bachinger J, Zander P (2007) ROTOR, a tool for generating and evaluating crop rotations for organic farming systems. Eur J Agron 26(2):130–143

    Google Scholar 

  • Bacon PJ, Cain JD, Howard DC (2002) Belief network models of land manager decisions and land use change. J Environ Manage 65(1):1–23

    PubMed  CAS  Google Scholar 

  • Baltas NC, Korka O (2002) Modelling farmers’ land use decisions. Appl Econ Lett 9(7):453–457

    Google Scholar 

  • Bartolini F, Bazzani G, Gallerani V, Raggi M, Viaggi D (2007) The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: an analysis based on farm level multi-attribute linear programming models. Agric Syst 93(1–3):90–114

    Google Scholar 

  • Bel Haj Hassine N, Simioni M (2000) Estimation of two-stage models of multicrop production: with an application to irrigated water allocation in Tunisian agriculture. Région et développement, 121–141

  • Benoit M, Le Ber F, Mari JF (2001) Recherche des successions de cultures et de leurs évolutions: analyse par HMM des données Ter-Uti en Lorraine. La statistique agricole 31:23–30

    Google Scholar 

  • Bergez J, Colbach N, Crespo O, Garcia F, Jeuffroy M, Justes E, Loyce C, Munier-Jolain N, Sadok W (2010) Designing crop management systems by simulation. Eur J Agron 32(1):3–9

    Google Scholar 

  • Bohanec M, Rajkovic V (1990) DEX: an expert system shell for decision support. Sistemica 1(1):145–157

    Google Scholar 

  • Buick RD, Stone ND, Scheckler RK, Roach JW (1992) CROPS: a whole-farm crop rotation planning system to implement sustainable agriculture. AI Appl 6(3):29–50

    Google Scholar 

  • Bullock DG (1992) Crop rotation. Crit Rev Plant Sci 11(4):309–326

    Google Scholar 

  • Burel F, Baudry J (2003) Landscape ecology: concepts, methods, and applications. Science Publisher, Hampshire

    Google Scholar 

  • Carberry PS, Hochman Z, McCown RL, Dalgliesh NP, Foale MA, Poulton PL, Hargreaves JNG, Hargreaves DMG, Cawthray S, Hillcoat N, Robertson MJ (2002) The FARMSCAPE approach to decision support: farmers’, advisers’, researchers’ monitoring, simulation, communication and performance evaluation. Agric Syst 74(1):141–177

    Google Scholar 

  • Castellazzi M, Perry J, Colbach N, Monod H, Adamczyk K, Viaud V, Conrad K (2007) New measures and tests of temporal and spatial pattern of crops in agricultural landscapes. Agric Ecosyst Environ 118(1–4):339–349

    Google Scholar 

  • Castellazzi M, Wood G, Burgess P, Morris J, Conrad K, Perry J (2008) A systematic representation of crop rotations. Agric Syst 97(1–2):26–33

    Google Scholar 

  • Chambers RG, Just RE (1989) Estimating multioutput technologies. Am J Agric Econ 71(4):980–995

    Google Scholar 

  • Chavas JP, Holt MT (1990) Acreage decisions under risk: the case of corn and soybeans. Am J Agric Econ 72(3):548–555

    Google Scholar 

  • Cox PG (1996) Some issues in the design of agricultural decision support systems. Agric Syst 52(2–3):355–381

    Google Scholar 

  • Dalgaard T, Hutchings NJ, Porter JR (2003) Agroecology, scaling and interdisciplinarity. Agric Ecosyst Environ 100(1):39–51

    Google Scholar 

  • Darnhofer I, Bellon S, Dedieu B et al. (2008) Adaptive farming systems—a position paper. In: 8th European IFSA Symposium. Clermont-Ferrand (France), pp. 339–351

  • Detlefsen NK, Jensen AL (2007) Modelling optimal crop sequences using network flows. Agric Syst 94(2):566–572

    Google Scholar 

  • deVoil P, Rossing WAH, Hammer GL (2006) Exploring profit—sustainability trade-offs in cropping systems using evolutionary algorithms. Environ Modell Softw 21(9):1368–1374

    Google Scholar 

  • Dogliotti S, Rossing WAH, van Ittersum MK (2003) ROTAT, a tool for systematically generating crop rotations. Eur J Agron 19(2):239–250

    Google Scholar 

  • Dogliotti S, Rossing WAH, van Ittersum MK (2004) Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay. Agric Syst 80(3):277–302

    Google Scholar 

  • Dogliotti S, Ittersum MV, Rossing W (2005) A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay. Agric Syst 86(1):29–51

    Google Scholar 

  • Dorward A (1999) Modelling embedded risk in peasant agriculture: methodological insights from northern Malawi. Agric Econ 21(2):191–203

    Google Scholar 

  • El-Nazer T, McCarl BA (1986) The choice of crop rotation: a modelling approach and case study. Am J Agric Econ 68(1):127–136

    Google Scholar 

  • European Parliament Council (2006) Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

  • Foltz J, Lee J, Martin M, Preckel P (1995) Multiattribute assessment of alternative cropping systems. Am J Agric Econ 77(2):408–420

    Google Scholar 

  • Garcia F, Guerrin F, Martin-Clouaire R et al. (2005) The human side of agricultural production management: the missing focus in simulation approaches

  • Glen J (1987) Mathematical-models in farm-planning: a survey. Oper Res 35(5):641–666

    Google Scholar 

  • Griffon M (1999) The doubly green revolution: models and realities. Cah Agric 8:259–268

    Google Scholar 

  • Gupta AP, Harboe R, Tabucanon MT (2000) Fuzzy multiple-criteria decision making for crop area planning in Narmada river basin. Agric Syst 63(1):1–18

    Google Scholar 

  • Hardaker JB, Pandey S, Patten LH (1991) Farm planning under uncertainty: a review of alternative programming models

  • Hayashi K (2000) Multicriteria analysis for agricultural resource management: a critical survey and future perspectives. Eur J Oper Res 122(2):486–500

    Google Scholar 

  • Hazell PBR, Norton RD (1986) Mathematical programming for economic analysis in agriculture. Macmillan

  • Heady EO (1948) The economics of rotations with farm and production policy applications. J Farm Econ 30(4):645–664

    Google Scholar 

  • Heady EO (1954) Simplified presentation and logical aspects of linear programming technique. J Farm Econ 36(5):1035–1048

    Google Scholar 

  • Hijmans R, van Ittersum M (1996) Aggregation of spatial units in linear programming models to explore land use options. Neth J Agric Sci 44(2):145–162

    Google Scholar 

  • Holt MT (1999) A linear approximate acreage allocation model. J Agric Resour Econ 24(2):383–397

    Google Scholar 

  • Howitt RE (1995) Positive mathematical programming. Am J Agric Econ 77(2):329–342

    Google Scholar 

  • Huang W, Liang T, Wu I (1974) Optimizing water utilization through multiple crops scheduling. In: Annual Meeting of the American Society of Agricultural Engineers. Oklahoma, p. 26

  • Itoh T, Ishii H, Nanseki T (2003) A model of crop planning under uncertainty in agricultural management. Int J Prod Econ 81–82:555–558

    Google Scholar 

  • Joannon A, Souchère V, Martin P, Papy F (2006) Reducing runoff by managing crop location at the catchment level, considering agronomic constraints at farm level. Land Degrad Dev 17(5):467–478

    Google Scholar 

  • Joannon A, Bro E, Thenail C, Baudry J (2008) Crop patterns and habitat preferences of the grey partridge farmland bird. Agron Sustainable Dev 28(3):379–387

    Google Scholar 

  • Just RE, Zilberman D, Hochman E (1983) Estimation of multicrop production functions. Am J Agric Econ 65(4):770–780

    Google Scholar 

  • Keating BA, McCown RL (2001) Advances in farming systems analysis and intervention. Agric Syst 70(2–3):555–579

    Google Scholar 

  • Kein Haneveld WK, Stegeman AW (2005) Crop succession requirements in agricultural production planning. Eur J Oper Res 166(2):406–429

    Google Scholar 

  • Kennedy JOS (1986) Dynamic programming: applications to agriculture and natural resources. Elsevier Science Pub. Co, New York

    Google Scholar 

  • Kipkorir EC, Sahli A, Raes D (2002) MIOS: a decision tool for determination of optimal irrigated cropping pattern of a multicrop system under water scarcity constraints. Irrigat Drain 51(2):155–166

    Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and "land cover" change in tropical regions "land use". Annu Rev Environ Resour 28(1):205–241

    Google Scholar 

  • Lazrak EG, Mari JF, Benoit M (2010) Landscape regularity modelling for environmental challenges in agriculture. Landscape Ecol 25(2):1–15

    Google Scholar 

  • Le Bail M, Lecroart B, Gauffreteau A, Angevin F, Messean A (2010) Effect of the structural variables of landscapes on the risks of spatial dissemination between GM and non-GM maize. Eur J Agron 33(1):12–23

    Google Scholar 

  • Le Ber F, Benoit M, Schott C, Mari J-F, Mignolet C (2006) Studying crop sequences with CarrotAge, a HMM-based data mining software. Ecol Modell 191(1):170–185

    Google Scholar 

  • Le Gal P-Y, Merot A, Moulin C-H, Navarrete M, Wery J (2009) A modelling framework to support farmers in designing agricultural production systems. Environ Modell Softw 25(2):258–268

    Google Scholar 

  • Leenhardt D, Cernesson F, Mari JF et al. (2005) Anticiper l’assolement pour mieux gérer les ressources en eau: comment valoriser les données d’occupation du sol? Ingénieries - E A T, 13–22

  • Leenhardt D, Angevin F, Biarnes A, Colbach N, Mignolet C (2010) Describing and locating cropping systems on a regional scale. A review. Agron Sustainable Dev 30(1):131–138

    Google Scholar 

  • Leroy P, Jacquin C (1991) LORA: a decision support system for the choice of crops on the irrigable area of a farm. Bruges, p. 11

  • Leteinturier B, Herman J, Longueville FD, Quintin L, Oger R (2006) Adaptation of a crop sequence indicator based on a land parcel management system. Agric Ecosyst Environ 112(4):324–334

    Google Scholar 

  • Lô-Pelzer E, Bousset L, Jeuffroy M, Salam M, Pinochet X, Boillot M, Aubertot J (2010) SIPPOM-WOSR: a simulator for integrated pathogen population management of phoma stem canker on winter oilseed rape: I. Description of the model. Field Crops Res 118(1):73–81

    Google Scholar 

  • Louhichi K, Kanellopoulos A, Janssen S, Flichman G, Blanco M, Hengsdijk H, Heckelei T, Berentsen P, Lansink AO, van Ittersum M (2010) FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies. Agric Syst 103(8):585–597

    Google Scholar 

  • Mackenzie A, Pidd M, Rooksby J, Sommerville I, Warren I, Westcombe M (2006) Wisdom, decision support and paradigms of decision making. Eur J Oper Res 170(1):156–171

    Google Scholar 

  • Mainuddin M, Das Gupta A, Raj Onta P (1997) Optimal crop planning model for an existing groundwater irrigation project in Thailand. Agric Water Manage 33(1):43–62

    Google Scholar 

  • Martin-Clouaire R, Rellier J-P (2009) Modelling and simulating work practices in agriculture. Int J Metadata Semant Ontol 4(1/2):42–53

    Google Scholar 

  • Matthews KB et al. (2011) Raising the bar? - The challenges of evaluating the outcomes of environmental modelling and software. Environmental Modelling & Software 26(3):247–257. Available at: http://www.sciencedirect.com/science/article/B6VHC-4YXMP6Y-2/2/2bc0ee0e670a4218b1e3a6768d04cc68 [Accessed February 24, 2011].

  • Maxime F, Mollet JM, Papy F (1995) Aide au raisonnement de l’assolement en grande culture. Cah Agric 4:351–362

    Google Scholar 

  • McCarl BA, Candler WV, Doster DH, Robbins PR (1977) Experiences with farmer oriented linear programming for crop planning. Can J Agr Econ 25(1):17–30

    Google Scholar 

  • McCown RL (2002) Changing systems for supporting farmers’ decisions: problems, paradigms, and prospects. Agric Syst 74(1):179–220

    Google Scholar 

  • Meynard JM, Doré T, Habib R (2001) L’évaluation et la conception de systèmes de culture pour une agriculture durable. Comptes rendus de l’Académie d’agriculture de France 87(4):223–236

    Google Scholar 

  • Mignolet C, Schott C, Benoit M (2007) Spatial dynamics of farming practices in the Seine Basin: methods for agronomic approaches on a regional scale. Sci Total Environ 375(1–3):13–32

    PubMed  CAS  Google Scholar 

  • Morlon P, Trouche G (2005) La logistique dans les exploitations de « grande culture»: nouveaux enjeux. 1-L’organisation spatiale des chantiers, une question dépassée en grande culture. Cah Agric 14(2):233–239

    Google Scholar 

  • Mottet A, Ladet S, Coqué N, Gibon A (2006) Agricultural land-use change and its drivers in mountain landscapes: a case study in the pyrenees. Agric Ecosyst Environ 114(2–4):296–310

    Google Scholar 

  • Navarrete M, Bail ML (2007) SALADPLAN: a model of the decision-making process in lettuce and endive cropping. Agron Sustainable Dev 27(3):209–221

    Google Scholar 

  • Nevo A, Amir I (1991) CROPLOT—an expert system for determining the suitability of crops to plots. Agric Syst 37(3):225–241

    Google Scholar 

  • Nevo A, Oad R, Podmore TH (1994) An integrated expert system for optimal crop planning. Agric Syst 45(1):73–92

    Google Scholar 

  • Nuthall P (2010) Farm business management: the human factor. CAB International

  • Ohlmer B, Olson K, Brehmer B (1998) Understanding farmers’ decision making processes and improving managerial assistance. Agric Econ 18(3):273–290

    Google Scholar 

  • Olarinde L (2008) Analysing optimum and alternative farm plans for risk averse grain crop farmers in Kaduna state, Northern, Nigeria. World J Agric Sci 4(1):28–35

    Google Scholar 

  • Orazem PF, Miranowski JA (1994) A dynamic model of acreage allocation with general and crop-specific soil capital. Am J Agric Econ 76(3):385–395

    Google Scholar 

  • Ortega Álvarez J, Juan Valero J, Tarjuelo Martìn-Benito J, López Mata E (2004) MOPECO: an economic optimization model for irrigation water management. Irrig Sci 23(2):61–75

    Google Scholar 

  • Pachauri RK, Reisinger A (2007) Climate change 2007: synthesis report. IPCC, Geneva

    Google Scholar 

  • Papy F (2001) Interdépendence des systèmes de culture dans l’exploitation, cirad, inr Edition. Repères. pp. 51–74

  • Piech B, Rehman T (1993) Application of multiple criteria decision making methods to farm planning: a case study. Agric Syst 41(3):305–319

    Google Scholar 

  • Pocewicz A, Nielsen-Pincus M, Goldberg CS, Johnson MH, Morgan P, Force JE, Waits LP, Vierling L (2008) Predicting land use change: comparison of models based on landowner surveys and historical land cover trends. Landscape Ecol 23(2):195–210

    Google Scholar 

  • Rammel C, van den Bergh JC (2003) Evolutionary policies for sustainable development: adaptive flexibility and risk minimising. Ecol Econ 47(2–3):121–133

    Google Scholar 

  • Rehman T, Romero C (1993) The application of the MCDM paradigm to the management of agricultural systems: Some basic considerations. Agric Syst 41(3):239–255

    Google Scholar 

  • Rossing WAH, Meynard JM, van Ittersum MK (1997) Model-based explorations to support development of sustainable farming systems: case studies from France and the Netherlands. Eur J Agron 7(1–3):271–283

    Google Scholar 

  • Rotmans J (2009) Two decades of integrated assessment tools: a promising way forward. In: Integrated assessment of agriculture and sustainable development (AgSAP). Egmond aan Zee, The Netherlands, pp 8–10

    Google Scholar 

  • Rounsevell MDA, Annetts JE, Audsley E, Mayr T, Reginster I (2003) Modelling the spatial distribution of agricultural land use at the regional scale. Agric Ecosyst Environ 95(2–3):465–479

    Google Scholar 

  • Sadok W, Angevin F, Bergez J-E, Bockstaller C, Colomb B, Guichard L, Reau R, Messéan A, Doré T (2009) MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron Sustainable Dev 29(3):447–461

    Google Scholar 

  • Sarker RA, Quaddus MA (2002) Modelling a nationwide crop planning problem using a multiple criteria decision making tool. Comput Ind Eng 42(2–4):541–553

    Google Scholar 

  • Sarker R, Ray T (2009) An improved evolutionary algorithm for solving multi-objective crop planning models. Comput Electron Agric 68(2):191–199

    Google Scholar 

  • Sarker RA, Talukdar S, Haque AFMA (1997) Determination of optimum crop mix for crop cultivation in Bangladesh. Appl Math Model 21(10):621–632

    Google Scholar 

  • Sethi LN, Panda SN, Nayak MK (2006) Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India. Agric Water Manage 83(3):209–220

    Google Scholar 

  • Shumway CR, Pope RD, Nash EK (1984) Allocatable fixed inputs and jointness in agricultural production: implications for economic modeling. Am J Agric Econ 66(1):72–78

    Google Scholar 

  • Smit B, Burton I, Klein RJT, Street R (1999) The science of adaptation: a framework for assessment. Mitig Adapt Strateg Glob Change 4(3):199–213

    Google Scholar 

  • Stoate C, Boatman ND, Borralho RJ, Carvalho CR, Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manage 63(4):337–365

    PubMed  CAS  Google Scholar 

  • Stockle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18(3–4):289–307

    Google Scholar 

  • Stone ND, Buick RD, Roach JW, Scheckler RK, Rupani R (1992) The planning problem in agriculture: farm-level crop rotation planning as an example. AI Appl 6(1):59–75

    Google Scholar 

  • Sumpsi J, Amador F, Romero C (1996) On farmers’ objectives: a multi-criteria approach. Eur J Oper Res 96(1):64–71

    Google Scholar 

  • Thenail C, Baudry J (2004) Variation of farm spatial land use pattern according to the structure of the hedgerow network (bocage) landscape: a case study in northeast Brittany. Agric Ecosyst Environ 101(1):53–72

    Google Scholar 

  • Thenail C, Joannon A, Capitaine M, Souchère V, Mignolet C, Schermann N, Di Pietro F, Pons Y, Gaucherel C, Viaud V, Others (2009) The contribution of crop-rotation organization in farms to crop-mosaic patterning at local landscape scales. Agric Ecosyst Environ 131(3–4):207–219

    Google Scholar 

  • Thomas A (2003) A dynamic model of on-farm integrated nitrogen management. Eur Rev Agric Econ 30(4):439–460

    Google Scholar 

  • Tsai YJ, Jones JW, Mishoe JW (1987) Optimizing multiple cropping systems: a systems approach. Trans ASAE 30(6):1554–1561

    Google Scholar 

  • Tsakiris G, Spiliotis M (2006) Cropping pattern planning under water supply from multiple sources. Irrig Drain Syst 20(1):57–68

    Google Scholar 

  • Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67(1):1–22

    Google Scholar 

  • Vavra P, Colman D (2003) The analysis of UK crop allocation at the farm level: implications for supply response analysis. Agric Syst 76(2):697–713

    Google Scholar 

  • Verburg PH, Veldkamp A (2001) The role of spatially explicit models in land-use change research: a case study for cropping patterns in China. Agric Ecosyst Environ 85(1–3):177–190

    Google Scholar 

  • Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Eur J Agron 7(1–3):235–250

    Google Scholar 

  • Wijnands E (1999) Crop rotation in organic farming: theory and practice. In: Designing and testing crop rotations for organic farming. Proceedings from an international workshop. Danish Research Centre for Organic Farming, pp. 21–35

  • Winder N, Jeffrey P, Lemon M (1998) Simulation of crop choice dynamics: an application of nested Master-Equation models. Etudes et Recherches sur les Systemes Agraire et le Developpment Vol 31, pp. 175–189.Vol. 31. Quae, pp. 175–189

Download references

Acknowledgements

This research work was funded by INRA, Arvalis-institut du végétal and CETIOM through the establishment of the UMTeau. UMTeau is a joint research and development unit working on tools and methods for a better agricultural quantitative water management: from the irrigation block up to an irrigation collective area. We sincerely thank Sze Mei Ringeval for checking and correcting the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Dury.

About this article

Cite this article

Dury, J., Schaller, N., Garcia, F. et al. Models to support cropping plan and crop rotation decisions. A review. Agron. Sustain. Dev. 32, 567–580 (2012). https://doi.org/10.1007/s13593-011-0037-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0037-x

Keywords

Navigation