Skip to main content
Log in

Erythropoietin improves pulmonary hypertension by promoting the homing and differentiation of bone marrow mesenchymal stem cells in lung tissue

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) is a chronic disease thatultimately progresses to right-sided heart failure and death. Erythropoietin (EPO) has been shown to have therapeutic potential in cardiovascular diseases, including PAH. In this study, we aimed to investigate the improvement effect of EPO pretreated bone marrow mesenchymal stem cells (BMSCs) on PAH. BMSCs were obtained from the bone marrow of male SD rats. Female rats were randomly divided into six groups, including control group, monocrotaline (MCT)-induced group, and four groups with different doses of EPO pretreated BMSCs. Lung tissue was taken for testing at 2 weeks of treatment. Our results showed EPO promoted homing and endothelial cell differentiation of BMSCs in the lung tissues of PAH rats. EPO and BMSCs treatment attenuated pulmonary arterial pressure, polycythemia, and pulmonary artery structural remodeling. Furthermore, BMSCs inhibited pulmonary vascular endothelial-to-mesenchymal transition (EndoMT) in PAH rats, which was further suppressed by EPO in a concentration-dependent manner. Meanwhile, EPO and BMSC treatment elevated pulmonary angiogenesis in PAH rats. BMSCs inhibited TNF-α, IL-1β, IL-6, and MCP-1 in lung tissues of PAH rats, which was further decreased by EPO in a concentration-dependent manner. Thus, EPO improved pulmonary hypertension (PH) by promoting the homing and differentiation of BMSCs in lung tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hassoun PM. Pulmonary arterial hypertension. N Engl J Med. 2021;385(25):2361–76.

    PubMed  CAS  Google Scholar 

  2. Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: a review. JAMA. 2022;327(14):1379–91.

    PubMed  CAS  Google Scholar 

  3. Maron BA, Abman SH. Pulmonary arterial hypertension: diagnosis, treatment, and novel advances. Case Rep. 2021;203(12):1472–87.

    CAS  Google Scholar 

  4. Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492.

    PubMed  PubMed Central  Google Scholar 

  5. Thompson AAR, Lawrie A. Targeting vascular remodeling to treat pulmonary arterial hypertension. Trends Mol Med. 2017;23(1):31–45.

    PubMed  CAS  Google Scholar 

  6. Coons JC, Pogue K, Kolodziej AR, Hirsch GA, George MP. Pulmonary arterial hypertension: a pharmacotherapeutic update. Curr Cardiol Rep. 2019;21(11):141.

    PubMed  Google Scholar 

  7. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14.

    PubMed  Google Scholar 

  8. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.

    PubMed  CAS  Google Scholar 

  9. Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339–47.

    PubMed  Google Scholar 

  10. Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74(13):2345–60.

    PubMed  CAS  Google Scholar 

  11. He J, Liu J, Huang Y, Tang X, Xiao H, Hu Z. Oxidative stress, inflammation, and autophagy: potential targets of mesenchymal stem cells-based therapies in ischemic stroke. Front Neurosci. 2021;15: 641157.

    PubMed  PubMed Central  Google Scholar 

  12. Dierick F, Solinc J, Bignard J, Soubrier F, Nadaud S. Progenitor/stem cells in vascular remodeling during pulmonary arterial hypertension. Cells. 2021;10(6):1338.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Huang J, Lu W, Ouyang H, Chen Y, Zhang C, Luo X, Li M, Shu J, Zheng Q, Chen H, et al. Transplantation of mesenchymal stem cells attenuates pulmonary hypertension by normalizing the endothelial-to-mesenchymal transition. Am J Respir Cell Mol Biol. 2020;62(1):49–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Muhammad SA, Abbas AY, Saidu Y, Fakurazi S, Bilbis LS. Therapeutic efficacy of mesenchymal stromal cells and secretome in pulmonary arterial hypertension: a systematic review and meta-analysis. Biochimie. 2020;168:156–68.

    PubMed  CAS  Google Scholar 

  15. Pan X, Suzuki N, Hirano I, Yamazaki S, Minegishi N, Yamamoto M. Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS ONE. 2011;6(10):e25839.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Rathod DB, Salahudeen AK. Nonerythropoietic properties of erythropoietin: implication for tissue protection. J Investig Med. 2011;59(7):1083–5.

    PubMed  CAS  Google Scholar 

  17. Sun LL, Lei FR, Jiang XD, Du XL, Xiao L, Li WD, Li XQ. LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FGF2 and MMP2/9 through the miR-223-3p/FOXO1/Akt pathway. Aging. 2020;12(5):4506–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Song Z, Lian W, He Y, Zhang C, Lin G. Targeting erythrocyte-mediated hypoxia to alleviate lung injury induced by pyrrolizidine alkaloids. Arch Toxicol. 2023;97(3):819–29.

    PubMed  CAS  Google Scholar 

  19. Han XP, Zhang FQ, Tan XS, Liu L, Ma WX, Ou-Yang HF, Wu CG. EPO modified MSCs can inhibit asthmatic airway remodeling in an animal model. J Cell Biochem. 2018;119(1):1008–16.

    PubMed  CAS  Google Scholar 

  20. Zhang Y, Zhou S, Hu JM, Chen H, Liu D, Li M, Guo Y, Fan LP, Li LY, Liu YG, et al. Preliminary study of bone marrow-derived mesenchymal stem cells pretreatment with erythropoietin in preventing acute rejection after rat renal transplantation. Transpl Proc. 2018;50(10):3873–80.

    CAS  Google Scholar 

  21. Sun C, Zhang S, Wang J, Jiang W, Xin Q, Chen X, Zhang Z, Luan Y. EPO enhances the protective effects of MSCs in experimental hyperoxia-induced neonatal mice by promoting angiogenesis. Aging. 2019;11(8):2477–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Cai C, Wu Y, Yang L, Xiang Y, Zhu N, Zhao H, Hu W, Lv L, Zeng C. Sodium selenite attenuates balloon injury-induced and monocrotaline-induced vascular remodeling in rats. Front Pharmacol. 2021;12: 618493.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhang ZH, Lu Y, Luan Y, Zhao JJ. Effect of bone marrow mesenchymal stem cells on experimental pulmonary arterial hypertension. Exp Ther Med. 2012;4(5):839–43.

    PubMed  PubMed Central  Google Scholar 

  24. Luan Y, Zhang X, Kong F, Cheng GH, Qi TG, Zhang ZH. Mesenchymal stem cell prevention of vascular remodeling in high flow-induced pulmonary hypertension through a paracrine mechanism. Int Immunopharmacol. 2012;14(4):432–7.

    PubMed  CAS  Google Scholar 

  25. Liu N, Tian J, Wang W, Cheng J, Hu D, Zhang J. Effect and mechanism of erythropoietin on mesenchymal stem cell proliferation in vitro under the acute kidney injury microenvironment. Exp Biol Med (Maywood). 2011;236(9):1093–9.

    PubMed  CAS  Google Scholar 

  26. Tsiftsoglou AS. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (mscs): implications in regenerative medicine. Cells. 2021;10(8):2140.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Yang ZH, Zhang SJ, Zhao HP, Li FF. Erythropoietin promotes the differentiation of fetal neural stem cells into glial cells via the erythropoietin receptor-β common receptor/Syne-1/H3K9me3 pathway. CNS Neurosci Ther. 2022;28(9):1351–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Allegra A, Galasso A, Siracusano L, Aloisi C, Corica F, Laganà A, Frisina N, Buemi M. Administration of recombinant erythropoietin determines increase of peripheral resistances in patients with hypovolemic shock. Nephron. 1996;74(2):431–2.

    PubMed  CAS  Google Scholar 

  29. Allegra A, Giacobbe MS, Corvaia E, Cinquegrani M, Corvaja E, Giorgianni G, Buemi M. Possible role of erythropoietin in the pathogenesis of chronic cor pulmonale. Nephrol Dial Transplant. 2005;20(12):2866–7.

    PubMed  CAS  Google Scholar 

  30. Satoh K, Kagaya Y, Nakano M, Ito Y, Ohta J, Tada H, Karibe A, Minegishi N, Suzuki N, Yamamoto M, et al. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation. 2006;113(11):1442–50.

    PubMed  CAS  Google Scholar 

  31. Hasegawa J, Wagner KF, Karp D, Li D, Shibata J, Heringlake M, Bahlmann L, Depping R, Fandrey J, Schmucker P, et al. Altered pulmonary vascular reactivity in mice with excessive erythrocytosis. Am J Respir Crit Care Med. 2004;169(7):829–35.

    PubMed  Google Scholar 

  32. Weissmann N, Manz D, Buchspies D, Keller S, Mehling T, Voswinckel R, Quanz K, Ghofrani HA, Schermuly RT, Fink L, et al. Congenital erythropoietin over-expression causes “anti-pulmonary hypertensive” structural and functional changes in mice, both in normoxia and hypoxia. Thromb Haemost. 2005;94(3):630–8.

    PubMed  CAS  Google Scholar 

  33. Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2017;367(3):643–9.

    PubMed  Google Scholar 

  34. Leopold JA, Maron BA. Molecular mechanisms of pulmonary vascular remodeling in pulmonary arterial hypertension. Int J Mol Sci. 2016;17(5):761.

    PubMed  PubMed Central  Google Scholar 

  35. Kovacs L, Cao Y, Han W, Meadows L, Kovacs-Kasa A, Kondrikov D, Verin AD, Barman SA, Dong Z, Huo Y, et al. PFKFB3 in smooth muscle promotes vascular remodeling in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2019;200(5):617–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Xie J, Hu D, Niu L, Qu S, Wang S, Liu S. Mesenchymal stem cells attenuate vascular remodeling in monocrotaline-induced pulmonary hypertension rats. J Huazhong Univ Scie Tehnol Medi Sci. 2012;32(6):810–7.

    CAS  Google Scholar 

  37. Silva M, Alencar AKN. Therapeutic benefit of the association of Lodenafil with mesenchymal stem cells on hypoxia-induced pulmonary hypertension in rats. Cells. 2020;9(9):2120.

    PubMed  PubMed Central  Google Scholar 

  38. de Mendonça L, Felix NS, Blanco NG, Da Silva JS, Ferreira TP, Abreu SC, Cruz FF, Rocha N, Silva PM, Martins V, et al. Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Res Ther. 2017;8(1):220.

    PubMed  PubMed Central  Google Scholar 

  39. Ambade AS, Hassoun PM, Damico RL. Basement membrane extracellular matrix proteins in pulmonary vascular and right ventricular remodeling in pulmonary hypertension. Am J Respir Cell Mol Biol. 2021;65(3):245–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Thenappan T, Chan SY, Weir EK. Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2018;315(5):H1322-h1331.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Arvidsson M, Ahmed A. Plasma matrix metalloproteinase 2 is associated with severity and mortality in pulmonary arterial hypertension. Pulm Circ. 2022;12(1): e12041.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Rampa DR, Murugesan P, Chao H, Feng H, Dai W, Lee D, Pekcec A, Doods H, Wu D. Reversal of pulmonary arterial hypertension and neointimal formation by kinin B1 receptor blockade. Respir Res. 2021;22(1):281.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18.

    PubMed  CAS  Google Scholar 

  44. Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26(3):313–47.

    PubMed  PubMed Central  Google Scholar 

  45. Chakraborty A, Nathan A, Orcholski M, Agarwal S, Shamskhou EA, Auer N, Mitra A, Guardado ES, Swaminathan G, Condon DF, et al. Wnt7a deficit is associated with dysfunctional angiogenesis in pulmonary arterial hypertension. Eur Respir J. 2023;61(6):2201625.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Hirsch K, Nolley S, Ralph DD, Zheng Y, Altemeier WA, Rhodes CJ, Morrell NW, Wilkins MR, Leary PJ, Rayner SG. Circulating markers of inflammation and angiogenesis and clinical outcomes across subtypes of pulmonary arterial hypertension. J Heart Lung Transplant. 2023;42(2):173–82.

    PubMed  Google Scholar 

  47. Ryan JJ, Huston J, Kutty S, Hatton ND, Bowman L, Tian L, Herr JE, Johri AM, Archer SL. Right ventricular adaptation and failure in pulmonary arterial hypertension. Can J Cardiol. 2015;31(4):391–406.

    PubMed  Google Scholar 

  48. Liu J, Wang W, Wang L, Chen S, Tian B, Huang K, Corrigan CJ, Ying S, Wang W, Wang C. IL-33 Initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells. EBioMedicine. 2018;33:196–210.

    PubMed  PubMed Central  Google Scholar 

  49. Elamaa H, Kaakinen M, Nätynki M, Szabo Z, Ronkainen VP, Äijälä V, Mäki JM, Kerkelä R, Myllyharju J, Eklund L. PHD2 deletion in endothelial or arterial smooth muscle cells reveals vascular cell type-specific responses in pulmonary hypertension and fibrosis. Angiogenesis. 2022;25(2):259–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Gong J, Feng Z, Peterson AL, Carr JF, Vang A. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. J Pathol. 2020;252(4):411–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114(4):565–77.

    PubMed  CAS  Google Scholar 

  52. Xiong J, Kawagishi H, Yan Y, Liu J, Wells QS, Edmunds LR, Fergusson MM, Yu ZX, Rovira II, Brittain EL, et al. A metabolic basis for endothelial-to-mesenchymal transition. Mol Cell. 2018;69(4):689-698.e687.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhao H, Wang Y, Zhang X, Guo Y, Wang X. miR-181b-5p inhibits endothelial-mesenchymal transition in monocrotaline-induced pulmonary arterial hypertension by targeting endocan and TGFBR1. Toxicol Appl Pharmacol. 2020;386: 114827.

    PubMed  Google Scholar 

  54. Tsutsumi T, Nagaoka T. Nintedanib ameliorates experimental pulmonary arterial hypertension via inhibition of endothelial mesenchymal transition and smooth muscle cell proliferation. PLoS ONE. 2019;14(7): e0214697.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Pullamsetti SS, Savai R, Janssen W, Dahal BK, Seeger W, Grimminger F, Ghofrani HA, Weissmann N, Schermuly RT. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clin Microbiol Infect. 2011;17(1):7–14.

    PubMed  CAS  Google Scholar 

  56. Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol. 1994;144(2):275–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Tuder RM, Voelkel NF. Pulmonary hypertension and inflammation. J Lab Clin Med. 1998;132(1):16–24.

    PubMed  CAS  Google Scholar 

  58. Goumans MJ, Lebrin F, Valdimarsdottir G. Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med. 2003;13(7):301–7.

    PubMed  CAS  Google Scholar 

  59. Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2007;176(10):1041–7.

    PubMed  CAS  Google Scholar 

  60. Itoh T, Nagaya N, Ishibashi-Ueda H, Kyotani S, Oya H, Sakamaki F, Kimura H, Nakanishi N. Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension. Respirology (Carlton, Vic). 2006;11(2):158–63.

    PubMed  Google Scholar 

  61. Feng S, Chen S, Yu W, Zhang D, Zhang C, Tang C, Du J, Jin H. H(2)S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension. Lab Investig. 2017;97(3):268–78.

    PubMed  CAS  Google Scholar 

  62. Liu J, Han Z, Han Z, He Z. Mesenchymal stem cells suppress CaN/NFAT expression in the pulmonary arteries of rats with pulmonary hypertension. Exp Ther Med. 2015;10(5):1657–64.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by a Grant from the Key Project of Sichuan Science and Technology Agency (No. 2020YFQ0042) and the National Natural Science Foundation of China (No. 82174226).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxiao Ma or Lu Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Compliance with Ethical Standards

Animals and experimental protocol were conducted according to the guidelines and ethical standards of the Animal Care and Use Ethics Committees of West China Hospital of Sichuan University (20230806001). Animal studies followed the ARRIVE 2.0 guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Li, K., Shen, C. et al. Erythropoietin improves pulmonary hypertension by promoting the homing and differentiation of bone marrow mesenchymal stem cells in lung tissue. Human Cell 37, 214–228 (2024). https://doi.org/10.1007/s13577-023-01009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-01009-y

Keywords

Navigation