Skip to main content

Advertisement

Log in

Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line, ICC-X3

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer of the biliary tract that is prone to recurrence and metastasis and is characterized by poor sensitivity to chemotherapy and overall prognosis. To address this challenge, the establishment of suitable preclinical models is critical. In this study, we successfully established a new ICC cell line, named ICC-X3, from the satellite lesions of one ICC patient. The cell line was characterized with respect to phenotypic, molecular, biomarker, functional and histological properties. STR confirmed that ICC-X3 was highly consistent with primary tumor tissue. ICC-X3 cells positively expressed CK7, CK19, E-cadherin, vimentin, and Ki67. ICC-X3 was all resistant to gemcitabine, paclitaxel, 5-FU, and oxaliplatin. The cell line was able to rapidly form xenograft tumors which were highly similar to the primary tumor. The missense mutation of TP53 exon was detected in ICC-X3 cells. ICC-X3 can be used as a good experimental model to study the progression, metastasis, and drug resistance of ICC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Alvaro D, Crocetti E, Ferretti S, Bragazzi MC, Capocaccia R, AISF Cholangiocarcinoma committee. Descriptive epidemiology of cholangiocarcinoma in Italy. Dig Liver Dis. 2010;42(7):490–5.

    Article  PubMed  Google Scholar 

  2. Kudo M, Izumi N, Kokudo N, Sakamoto M, Shiina S, Takayama T, et al. Report of the 22nd nationwide follow-up survey of primary liver cancer in Japan (2012–2013). Hepatol Res. 2022;52(1):5–66.

    Article  PubMed  Google Scholar 

  3. Petrick JL, Campbell PT, Koshiol J, Thistle JE, Andreotti G, Beane-Freeman LE, et al. Tobacco, alcohol use and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: the liver cancer pooling project. Br J Cancer. 2018;118(7):1005–12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shaib YH, Davila JA, McGlynn K, El-Serag HB. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol. 2004;40(3):472–7.

    Article  PubMed  Google Scholar 

  5. Witjes CD, Karim-Kos HE, Visser O, de Vries E, IJzermans JN, de Man RA, et al. Intrahepatic cholangiocarcinoma in a low endemic area: rising incidence and improved survival. HPB. 2012;14(11):777–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sakamoto Y, Kokudo N, Matsuyama Y, Sakamoto M, Izumi N, Kadoya M, Liver Cancer Study Group of Japan, et al. Proposal of a new staging system for intrahepatic cholangiocarcinoma: analysis of surgical patients from a nationwide survey of the liver cancer study group of Japan. Cancer. 2016;122(1):61–70.

    Article  PubMed  Google Scholar 

  7. Dover LL, Jacob R, Wang TN, Richardson JH, Redden DT, Li P, et al. Improved postoperative survival for intraductal-growth subtype of intrahepatic cholangiocarcinoma. Am Surg. 2016;82(11):1133–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang XF, Beal EW, Bagante F, Chakedis J, Weiss M, Popescu I, et al. Early versus late recurrence of intrahepatic cholangiocarcinoma after resection with curative intent. Br J Surg. 2018;105(7):848–56.

    Article  PubMed  Google Scholar 

  9. Merath K, Mehta R, Hyer JM, Bagante F, Sahara K, Alexandrescu S, et al. Impact of body mass index on tumor recurrence among patients undergoing curative-intent resection of intrahepatic cholangiocarcinoma- a multi-institutional international analysis. Eur J Surg Oncol. 2019;45(6):1084–91.

    Article  PubMed  Google Scholar 

  10. Hu LS, Zhang XF, Weiss M, Popescu I, Marques HP, Aldrighetti L, et al. Recurrence patterns and timing courses following curative-intent resection for intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2019;26(8):2549–57.

    Article  PubMed  Google Scholar 

  11. Valle JW, Furuse J, Jitlal M, Beare S, Mizuno N, Wasan H, et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol. 2014;25(2):391–8.

    Article  CAS  PubMed  Google Scholar 

  12. Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol. 2016;1395:1–18.

    Article  CAS  PubMed  Google Scholar 

  13. Mirabelli P, Coppola L, Salvatore M. Cancer cell lines are useful model systems for medical research. Cancers (Basel). 2019;11(8):1098.

    Article  CAS  PubMed  Google Scholar 

  14. Isidan A, Yenigun A, Soma D, Aksu E, Lopez K, Park Y, et al. Development and characterization of human primary cholangiocarcinoma cell lines. Am J Pathol. 2022;192(9):1200–17.

    Article  CAS  PubMed  Google Scholar 

  15. Fusenig NE, Capes-Davis A, Bianchini F, Sundell S, Lichter P. The need for a worldwide consensus for cell line authentication: experience implementing a mandatory requirement at the international journal of cancer. PLoS Biol. 2017;15(4): e2001438.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Komuta M. Intrahepatic cholangiocarcinoma: tumour heterogeneity and its clinical relevance. Clin Mol Hepatol. 2022;28(3):396–407.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Sun Y, Bertagnolli MM. Comparison of gastric cancer survival between Caucasian and Asian patients treated in the United States: results from the surveillance epidemiology and end results (SEER) database. Ann Surg Oncol. 2015;22:2965–71.

    Article  PubMed  Google Scholar 

  18. Lin SJ, Gagnon-Bartsch JA, Tan IB, Earle S, Ruff L, Pettinger K, et al. Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas. Gut. 2015;64(11):1721–31.

    Article  CAS  PubMed  Google Scholar 

  19. Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9(2):154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma S, Hu L, Huang XH, Cao LQ, Chan KW, Wang Q, et al. Establishment and characterization of a human cholangiocarcinoma cell line. Oncol Rep. 2007;18(5):1195–200.

    PubMed  Google Scholar 

  21. Guo SS, Wang Y, Fan QX. Raddeanin A promotes apoptosis and ameliorates 5-fluorouracil resistance in cholangiocarcinoma cells. World J Gastroenterol. 2019;25(26):3380–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen S, Chen Z, Li Z, Li S, Wen Z, Cao L, et al. Tumor-associated macrophages promote cholangiocarcinoma progression via exosomal Circ_0020256. Cell Death Dis. 2022;13(1):94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kusaka Y, Tokiwa T, Sato J. Establishment and characterization of a cell line from a human cholangiocellular carcinoma. Res Exp Med (Berl). 1988;188(5):367–75.

    Article  CAS  PubMed  Google Scholar 

  24. Eguchi T, Sheta M, Fujii M, Calderwood SK. Cancer extracellular vesicles, tumoroid models, and tumor microenvironment. Semin Cancer Biol. 2022. https://doi.org/10.1016/j.semcancer.2022.01.003.

    Article  PubMed  Google Scholar 

  25. Koike N, Todoroki T, Kawamoto T, Yoshida S, Kashiwagi H, Fukao K, et al. The invasion potentials of human biliary tract carcinoma cell lines: correlation between invasiveness and morphologic characteristics. Int J Oncol. 1998;13(6):1269–74.

    CAS  PubMed  Google Scholar 

  26. Gemble S, Wardenaar R, Keuper K, Srivastava N, Nano M, Macé AS, et al. Genetic instability from a single S phase after whole-genome duplication. Nature. 2022;604(7904):146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. López S, Lim EL, Horswell S, Haase K, Huebner A, Dietzen M, et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat Genet. 2020;52(3):283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, Armenia J, et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat Genet. 2018;50(8):1189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peraldo-Neia C, Massa A, Vita F, Basiricò M, Raggi C, Bernabei P, et al. A novel multidrug-resistant cell line from an Italian intrahepatic cholangiocarcinoma patient. Cancers (Basel). 2021;13(9):2051.

    Article  CAS  PubMed  Google Scholar 

  30. Cavalloni G, Peraldo-Neia C, Varamo C, Casorzo L, Dell’Aglio C, Bernabei P, et al. Establishment and characterization of a human intrahepatic cholangiocarcinoma cell line derived from an Italian patient. Tumour Biol. 2016;37(3):4041–52.

    Article  CAS  PubMed  Google Scholar 

  31. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.

    Article  CAS  PubMed  Google Scholar 

  32. Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Enjoji M, Sakai H, Nawata H, Kajiyama K, Tsuneyoshi M. Sarcomatous and adenocarcinoma cell lines from the same nodule of cholangiocarcinoma. In Vitro Cell Dev Biol Anim. 1997;33(9):681–3.

    Article  CAS  PubMed  Google Scholar 

  34. Tannapfel A, Weinans L, Geissler F, Schütz A, Katalinic A, Köckerling F, et al. Mutations of p53 tumor suppressor gene, apoptosis, and proliferation in intrahepatic cholangiocellular carcinoma of the liver. Dig Dis Sci. 2000;45(2):317–24.

    Article  CAS  PubMed  Google Scholar 

  35. Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J Mol Biol. 2017;429(11):1595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato Y, Harada K, Sasaki M, Nakanuma Y. Histological characterization of biliary intraepithelial neoplasia with respect to pancreatic intraepithelial neoplasia. Int J Hepatol. 2014;2014: 678260.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moschovis D, Bamias G, Delladetsima I. Mucins in neoplasms of pancreas, ampulla of Vater and biliary system. World J Gastrointest Oncol. 2016;8(10):725–34.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kozyrska K, Pilia G, Vishwakarma M, Wagstaff L, Goschorska M, Cirillo S, et al. p53 directs leader cell behavior, migration, and clearance during epithelial repair. Science. 2022;375(6581):eabl8876.

    Article  CAS  PubMed  Google Scholar 

  39. Qi LN, Ma L, Wu FX, Chen YY, Xu JX, Peng YC, et al. Clinical implications and biological features of a novel postoperative recurrent HCC classification: a multi-centre study. Liver Int. 2022;42(10):2283–98.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang W, Dong Y, Sartor O, Zhang K. Deciphering the increased prevalence of TP53 mutations in metastatic prostate cancer. Cancer Inform. 2022;21:11769351221087046.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Bullet Edits (http://www.bulletedits.cn) for English language editing of the manuscript.

Funding

This work was supported by grants from National Natural Science Foundation of China (Grant 82260555), the Gansu Provincial Science and Technology Plan (Grants 1606RJZA139, 21JR11RA096, 21JR1RA099, 21JR1RA113), Gansu Health Industry Project (Grant GSWSKY2020-21), Traditional Chinese Medicine Scientific Research Project of Gansu Province, China (Grant GZKP-2020–28),Talent Innovation and Entrepreneurship Project of Lanzhou (Grant 2020-RC-46), Lanzhou Science and Technology Plan Project (Grant 2022–3-45), Intra-Hospital Fund of the First Hospital of Lanzhou University (Grants ldyyyn-2014–01, ldyyyn2021-61 and ldyyyn2021-68).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HX, HZ and W-CZ; methodology: HX, WL, Z-JZ, XM and C-PC; software: HT, J-JH, HZ; validation: J-JH, HZ and Z-JZ; formal analysis: HX, WL; investigation: J-JH, HT, C-PC; resources: Z-JZ, WL and HZ; data curation: HX, XM and C-PC; writing–original draft preparation: HX; writing—review and editing: HX and W-CZ; visualization: HX, HT; supervision: HX, HZ; project administration: HX, and W-CZ; funding acquisition: HX, WL, Z-JZ, W-CZ, HZ, J-JH. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hao Xu, Hui Zhang or Wence Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of the First Hospital of Lanzhou University (LDYYLL2022-345).

Consent for publication

We have obtained consents to publish this paper from all the participants of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Luo, W., Zhao, Z. et al. Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line, ICC-X3. Human Cell 36, 854–865 (2023). https://doi.org/10.1007/s13577-023-00858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00858-x

Keywords

Navigation