Skip to main content

Advertisement

Log in

Functional and metabolic targeting of natural killer cells to solid tumors

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The unique ability of NK cells to target cancer cells without antigen specificity makes them an attractive prospect for immunotherapy of solid tumors. However, the complexity of the tumor microenvironment (TME), particularly its heterogeneity and associated immunosuppressive properties, enables solid tumor cells to escape NK cell immune-surveillance by impairing their infiltration and cytotoxic functions. As a result, NK cells that have been able to infiltrate solid tumors are dysfunctional, exhausted and metabolically and functionally impaired. Understanding the status of NK cells in solid tumors and the interplay between the tumor-promoting functions of the TME and the immunometabolic reprogramming events that NK cells endure as a result is essential to developing approaches to improve the clinical outcome of NK cell-based immunotherapies against solid tumors.

Conclusions

In this review, we address the current knowledge on the presence and immunometabolic roles of NK cells in solid tumors as well as the strategies developed to restore NK cell activities in these conditions, with the ultimate goal of enhancing persistence, trafficking, cytotoxicity and metabolic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADO:

adenosine

HLA:

human leukocyte antigen

IFN-γ:

interferon-γ

TME:

tumor microenvironment

ILC:

innate lymphoid cell

NK:

natural killer

ITIM:

immunoreceptor tyrosine-based inhibitory motif

PGE2:

prostaglandin E2

LDHA:

lactate dehydrogenase A

IL:

interleukin

A2AR:

adenosine A2 receptor

MDSC:

myeloid-derived suppressor cell

Treg :

regulatory T cell

ADCC:

antibody-dependent cellular cytotoxicity

NKG2D:

natural killer group 2 D

NKG2A:

natural killer group 2 A, KIR, killer immunoglobulin receptor

TIGIT:

T cell immunoreceptor with Ig and ITIM domains

TRAIL:

TNF-related apoptosis-inducing ligand

TNF-α:

tumor necrosis factor α

PD-1/L1:

programmed death protein-1/ligand

References

  1. C. Guillerey, N.D. Huntington, M.J. Smyth, Targeting natural killer cells in cancer immunotherapy. Nat Immunol 17, 1025–1036 (2016)

    CAS  PubMed  Google Scholar 

  2. A.M. Abel, C. Yang, M.S. Thakar, S. Malarkannan, Natural killer cells: Development, maturation, and clinical utilization. Front Immunol 9, 1869 (2018)

    PubMed  PubMed Central  Google Scholar 

  3. L. Chiossone, P.Y. Dumas, M. Vienne, E. Vivier, Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol 18, 671–688 (2018)

    CAS  PubMed  Google Scholar 

  4. F. Souza-Fonseca-Guimaraes, J. Cursons, N.D. Huntington, The emergence of natural killer cells as a major target in Cancer immunotherapy. Trends Immunol 40, 142–158 (2019)

    CAS  PubMed  Google Scholar 

  5. S. Sivori, P. Vacca, G. Del Zotto, E. Munari, M.C. Mingari, L. Moretta, Human NK cells: Surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 16, 430–441 (2019)

  6. E. Vivier, E. Tomasello, M. Baratin, T. Walzer, S. Ugolini, Functions of natural killer cells. Nat Immunol 9, 503–510 (2008)

    CAS  PubMed  Google Scholar 

  7. M.A. Cooper, T.A. Fehniger, M.A. Caligiuri, The biology of human natural killer-cell subsets. Trends Immunol 22, 633–640 (2001)

    CAS  PubMed  Google Scholar 

  8. M.A. Caligiuri, A. Zmuidzinas, T.J. Manley, H. Levine, K.A. Smith, J. Ritz, Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors J Exp Med 171, 1509–1526 (1990)

    CAS  PubMed  Google Scholar 

  9. J.J. Campbell, S. Qin, D. Unutmaz, D. Soler, K.E. Murphy, M.R. Hodge, L. Wu, E.C. Butcher, Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166, 6477–6482 (2001)

    CAS  PubMed  Google Scholar 

  10. W. Wang, A.K. Erbe, J.A. Hank, Z.S. Morris, P.M. Sondel, NK cell-mediated antibody-dependent cellular cytotoxicity in Cancer immunotherapy. Front Immunol 6, 368 (2015)

    PubMed  PubMed Central  Google Scholar 

  11. Y. Zhu, B. Huang, J. Shi, Fas ligand and lytic granule differentially control cytotoxic dynamics of natural killer cell against cancer target. Oncotarget. 7, 47163–47172 (2016)

    PubMed  PubMed Central  Google Scholar 

  12. E. Vivier, D.H. Raulet, A. Moretta, M.A. Caligiuri, L. Zitvogel, L.L. Lanier, W.M. Yokoyama, S. Ugolini, Innate or adaptive immunity? The example of natural killer cells Science 331, 44–49 (2011)

    CAS  PubMed  Google Scholar 

  13. J.B. Swann, M.J. Smyth, Immune surveillance of tumors. J Clin Invest 117, 1137–1146 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Lorenzo-Herrero, A. López-Soto, C. Sordo-Bahamonde, A.P. Gonzalez-Rodriguez, M. Vitale, S. Gonzalez, NK cell-based immunotherapy in Cancer metastasis. Cancers 11, 29 (2018)

    PubMed Central  Google Scholar 

  15. Y. Yu, J. Cui, Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett 16, 4105–4113 (2018)

    PubMed  PubMed Central  Google Scholar 

  16. M. Wang, J. Zhao, L. Zhang, F. Wei, Y. Lian, Y. Wu, Z. Gong, S. Zhang, J. Zhou, K. Cao, X. Li, W. Xiong, G. Li, Z. Zeng, C. Guo, Role of tumor microenvironment in tumorigenesis. J Cancer 8, 761–773 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. M.B. Schaaf, A.D. Garg, P. Agostinis, Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 9, 115 (2018)

    PubMed  PubMed Central  Google Scholar 

  18. S. Damgaci, A. Ibrahim-Hashim, P.M. Enriquez-Navas, S. Pilon-Thomas, A. Guvenis, R.J. Gillies, Hypoxia and acidosis: Immune suppressors and therapeutic targets. Immunology. 154, 354–362 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. J.D. Martin, D. Fukumura, D.G. Duda, Y. Boucher, R.K. Jain, Reengineering the tumor microenvironment to alleviate hypoxia and overcome Cancer heterogeneity. Cold Spring Harb Perspect Med 6, a027094 (2016)

    PubMed  PubMed Central  Google Scholar 

  20. S.L. Shiao, A.P. Ganesan, H.S. Rugo, L.M. Coussens, Immune microenvironments in solid tumors: New targets for therapy. Genes Dev 25, 2559–2572 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Nayyar, Y. Chu, M.S. Cairo, Overcoming resistance to natural killer cell based immunotherapies for solid tumors. Front Oncol 9, 51 (2019)

    PubMed  PubMed Central  Google Scholar 

  22. J. L. da Silva, A. L. S. Dos Santos, N. C. C. Nunes, F. de Moraes Lino da Silva, C. G. M. Ferreira, A. C. de Melo, Cancer immunotherapy: the art of targeting the tumor immune microenvironment. Cancer Chemother Pharmacol 84, 227–240 (2019)

  23. S.E. Keating, V. Zaiatz-Bittencourt, R.M. Loftus, C. Keane, K. Brennan, D.K. Finlay, C.M. Gardiner, Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J Immunol 196, 2552–2560 (2016)

    CAS  PubMed  Google Scholar 

  24. R.P. Donnelly, R.M. Loftus, S.E. Keating, K.T. Liou, C.A. Biron, C.M. Gardiner, D.K. Finlay, mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol 193, 4477–4484 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. S.M. Almutairi, A.K. Ali, W. He, D.S. Yang, P. Ghorbani, L. Wang, M.D. Fullerton, S.H. Lee, Interleukin-18 up-regulates amino acid transporters and facilitates amino acid-induced mTORC1 activation in natural killer cells. J Biol Chem 294, 4644–4655 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Mao, V. van Hoef, X. Zhang, E. Wennerberg, J. Lorent, K. Witt, L. Masvidal, S. Liang, S. Murray, O. Larsson, R. Kiessling, A. Lundqvist, IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood 128, 1475–1489 (2016)

  27. A. Marçais, J. Cherfils-Vicini, C. Viant, S. Degouve, S. Viel, A. Fenis, J. Rabilloud, K. Mayol, A. Tavares, J. Bienvenu, Y.G. Gangloff, E. Gilson, E. Vivier, T. Walzer, The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 15, 749–757 (2014)

    PubMed  PubMed Central  Google Scholar 

  28. Y. Wu, Z. Tian, H. Wei, Developmental and functional control of natural killer cells by cytokines. Front Immunol 8, 930 (2017)

    PubMed  PubMed Central  Google Scholar 

  29. N.W. Zwirner, A. Ziblat, Regulation of NK cell activation and effector functions by the IL-12 family of cytokines: The case of IL-27. Front Immunol 8, 25 (2017)

    PubMed  PubMed Central  Google Scholar 

  30. J. Rautela, N.D. Huntington, IL-15 signaling in NK cell cancer immunotherapy. Curr Opin Immunol 44, 1–6 (2017)

    CAS  PubMed  Google Scholar 

  31. M. Patidar, N. Yadav, S.K. Dalai, Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev 31, 49–59 (2016)

    PubMed  Google Scholar 

  32. N. Nandagopal, A.K. Ali, A.K. Komal, S.H. Lee, The critical role of IL-15–PI3K–mTOR pathway in natural killer cell effector functions. Front Immunol 5, 187 (2014)

    PubMed  PubMed Central  Google Scholar 

  33. A.K. Ali, N. Nandagopal, S.H. Lee, IL-15–PI3K–AKT–mTOR: A critical pathway in the life journey of natural killer cells. Front Immunol 6, 355 (2015)

    PubMed  PubMed Central  Google Scholar 

  34. R. Sharma, A. Das, IL-2 mediates NK cell proliferation but not hyperactivity. Immunol Res 66, 151–157 (2018)

    CAS  PubMed  Google Scholar 

  35. A.C. Jaime-Ramirez, B.L. Mundy-Bosse, S. Kondadasula, N.B. Jones, J.M. Roda, A. Mani, R. Parihar, V. Karpa, T.L. Papenfuss, K.M. LaPerle, E. Biller, A. Lehman, A.R. Chaudhury, D. Jarjoura, R.W. Burry, W.E. Carson, IL-12 enhances the antitumor actions of Trastuzumab via NK cell IFN-γ production. J Immunol 186, 3401–3409 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Y.H. Choi, E.J. Lim, S.W. Kim, Y.W. Moon, K.S. Park, H.J. An, IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells. J. ImmunoTher. Cancer 7, 168 (2019)

    PubMed  PubMed Central  Google Scholar 

  37. A. Ziblat, C.I. Domaica, R.G. Spallanzani, X.L.R. Iraolagoitia, L.E. Rossi, D.E. Avila, N.I. Torres, M.B. Fuertes, N.W. Zwirner, IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. Eur J Immunol 45, 192–202 (2015)

    CAS  PubMed  Google Scholar 

  38. N.W. Zwirner, C.I. Domaica, Cytokine regulation of natural killer cell effector functions. Biofactors 36, 274–288 (2010)

  39. M.P. Keppel, N. Topcagic, A.Y. Mah, T.P. Vogel, M.A. Cooper, Activation-specific metabolic requirements for NK cell IFN-γ production. J Immunol 194, 1954–1962 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. A.Y. Mah, M.A. Cooper, Metabolic regulation of natural killer cell IFN-γ production. Crit Rev Immunol 36, 131–147 (2016)

    PubMed  PubMed Central  Google Scholar 

  41. A.M. Chambers, K.B. Lupo, S. Matosevic, Tumor microenvironment-induced Immunometabolic reprogramming of natural killer cells. Front Immunol 9, 2517 (2018)

    PubMed  PubMed Central  Google Scholar 

  42. W. Salzberger, G. Martrus, K. Bachmann, H. Goebels, L. Heß, M. Koch, A. Langeneckert, S. Lunemann, K.J. Oldhafer, C. Pfeifer, T. Poch, L. Richert, C. Schramm, R. Wahib, M.J. Bunders, M. Altfeld, Tissue-resident NK cells differ in their expression profile of the nutrient transporters Glut1, CD98 and CD71. PLoS One 13, e0201170 (2018)

    PubMed  PubMed Central  Google Scholar 

  43. J. Cong, X. Wang, X. Zheng, D. Wang, B. Fu, R. Sun, Z. Tian, H. Wei, Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung Cancer progression. Cell Metab 28, 243–255 (2018)

    CAS  PubMed  Google Scholar 

  44. K. Slattery, V. Zaiatz-Bittencourt, E. Woods, K. Brennan, S. Marks, S. Chew, M. Conroy, C. Goggin, J. Kennedy, D.K. Finlay, C.M. Gardiner, TGFβ drives mitochondrial dysfunction in peripheral blood NK cells during metastatic breast cancer. BioRxiv 648501 (2019)

  45. A.M. Chambers, J. Wang, K.B. Lupo, H. Yu, N.M. Atallah Lanman, S. Matosevic, Adenosinergic signaling alters natural killer cell functional responses. Front Immunol 9, 2533 (2018)

    PubMed  PubMed Central  Google Scholar 

  46. S. Matosevic, A.M. Chambers, Immunometabolic dysfunction of natural killer cells mediated by the hypoxia-CD73 axis in solid tumors. Front Mol Biosci 6, 60 (2019)

    PubMed  PubMed Central  Google Scholar 

  47. M. Balsamo, C. Manzini, G. Pietra, F. Raggi, F. Blengio, M.C. Mingari, L. Varesio, L. Moretta, M.C. Bosco, M. Vitale, Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 43, 2756–2764 (2013)

    CAS  PubMed  Google Scholar 

  48. S.Y. Velásquez, D. Killian, J. Schulte, C. Sticht, M. Thiel, H.A. Lindner, Short-term hypoxia synergizes with interleukin 15 priming in driving glycolytic gene transcription and supports human natural killer cell activities. J Biol Chem 291, 12960–12977 (2016)

    PubMed  PubMed Central  Google Scholar 

  49. E. Krzywinska, C. Kantari-Mimoun, Y. Kerdiles, M. Sobecki, T. Isagawa, D. Gotthardt, M. Castells, J. Haubold, C. Millien, T. Viel, B. Tavitian, N. Takeda, J. Fandrey, E. Vivier, V. Sexl, C. Stockmann, Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun 8, 1597 (2017)

    PubMed  PubMed Central  Google Scholar 

  50. Y. Feng, Y. Xiong, T. Qiao, X. Li, L. Jia, Y. Han, Lactate dehydrogenase a: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med 7, 6124–6136 (2018)

    PubMed  PubMed Central  Google Scholar 

  51. C. Harmon, M.W. Robinson, F. Hand, D. Almuaili, K. Mentor, D.D. Houlihan, E. Hoti, L. Lynch, J. Geoghegan, C. O’Farrelly, Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res. 7, 335–346 (2019)

    CAS  PubMed  Google Scholar 

  52. J. Wang, S. Matosevic, NT5E/CD73 as correlative factor of patient survival and natural killer cell infiltration in glioblastoma. J Clin Med 8, 1526 (2019)

    CAS  PubMed Central  Google Scholar 

  53. J.S. Schleypen, N. Baur, R. Kammerer, P.J. Nelson, K. Rohrmann, E.F. Gröne, M. Hohenfellner, A. Haferkamp, H. Pohla, D.J. Schendel, C.S. Falk, E. Noessner, Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res 12, 718–725 (2006)

    CAS  PubMed  Google Scholar 

  54. J.S. Schleypen, M. Von Geldern, E.H. Weiss, N. Kotzias, K. Rohrmann, D.J. Schendel, C.S. Falk, H. Pohla, Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int J Cancer 106, 905–912 (2003)

    CAS  PubMed  Google Scholar 

  55. P.I. Tartter, B. Steinberg, D.M. Barron, G. Martinelli, The prognostic significance of natural killer cytotoxicity in patients with colorectal cancer. Arch Surg 122, 1264–1268 (1987)

    CAS  PubMed  Google Scholar 

  56. C. Denkert, G. von Minckwitz, S. Darb-Esfahani, B. Lederer, B. I. Heppner, K. E. Weber, J. Budczies, J. Huober, F. Klauschen, J. Furlanetto, W. D. Schmitt, J. U. Blohmer, T. Karn, B. M. Pfitzner, S. Kümmel, K. Engels, A. Schneeweiss, A. Hartmann, A. Noske, P. A. Fasching, C. Jackisch, M. van Mackelenbergh, P. Sinn, C. Schem, C. Hanusch, M. Untch, S. Loibl, Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19, 40–50 (2018)

  57. R. Salgado, C. Denkert, C. Campbell, P. Savas, P. Nuciforo, P. Nucifero, C. Aura, E. de Azambuja, H. Eidtmann, C.E. Ellis, J. Baselga, M.J. Piccart-Gebhart, S. Michiels, I. Bradbury, C. Sotiriou, S. Loi, Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast Cancer treated with Lapatinib and Trastuzumab: A secondary analysis of the NeoALTTO trial. JAMA Oncol 1, 448–454 (2015)

    PubMed  PubMed Central  Google Scholar 

  58. R. Gennari, S. Menard, F. Fagnoni, L. Ponchio, M. Scelsi, E. Tagliabue, F. Castiglioni, L. Villani, C. Magalotti, N. Gibelli, B. Oliviero, B. Ballardini, G. Da Prada, A. Zambelli, A. Costa, Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10, 5650–5655 (2004)

    CAS  PubMed  Google Scholar 

  59. A. Muntasell, F. Rojo, S. Servitja, C. Rubio-Perez, M. Cabo, D. Tamborero, M. Costa-García, M. Martínez-Garcia, S. Menéndez, I. Vazquez, A. Lluch, A. Gonzalez-Perez, A. Rovira, M. López-Botet, J. Albanell, NK cell infiltrates and HLA class I expression in primary HER2+ breast Cancer predict and uncouple pathological response and disease-free survival. Clin Cancer Res 25, 1535–1545 (2019)

    PubMed  Google Scholar 

  60. J. Cursons, F. Souza-Fonseca-Guimaraes, M. Foroutan, A. Anderson, F. Hollande, S. Hediyeh-Zadeh, A. Behren, N.D. Huntington, M.J. Davis, A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol Res 7, 1162–1174 (2019)

    PubMed  Google Scholar 

  61. A. Gras Navarro, A.T. Björklund, M. Chekenya, Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol 6, 102 (2015)

    Google Scholar 

  62. A. Jiménez-Sánchez, D. Memon, S. Pourpe, H. Veeraraghavan, Y. Li, H.A. Vargas, M.B. Gill, K.J. Park, O. Zivanovic, J. Konner, J. Ricca, D. Zamarin, T. Walther, C. Aghajanian, J.D. Wolchok, E. Sala, T. Merghoub, A. Snyder, M.L. Miller, Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian Cancer patient. Cell 170, 927–938 (2017)

  63. J. Kmiecik, J. Zimmer, M. Chekenya, Natural killer cells in intracranial neoplasms: Presence and therapeutic efficacy against brain tumours. J Neuro-Oncol 116, 1–9 (2014)

    CAS  Google Scholar 

  64. I. Golán, L. Rodríguez de la Fuente, J.A. Costoya, NK Cell-Based Glioblastoma Immunotherapy Cancers 10, 522 (2018)

    Google Scholar 

  65. W. Tomaszewski, L. Sanchez-Perez, T.F. Gajewski, J.H. Sampson, Brain tumor microenvironment and host state: Implications for immunotherapy. Clin Cancer Res 25, 4202–4210 (2019)

    PubMed  Google Scholar 

  66. R. Castriconi, A. Dondero, F. Bellora, L. Moretta, A. Castellano, F. Locatelli, M.V. Corrias, A. Moretta, C. Bottino, Neuroblastoma-derived TGF-β1 modulates the chemokine receptor repertoire of human resting NK cells. J Immunol 190, 5321–5328 (2013)

    CAS  PubMed  Google Scholar 

  67. I. Melero, A. Rouzaut, G.T. Motz, G. Coukos, T-cell and NK-cell infiltration into solid tumors: A key limiting factor for efficacious cancer immunotherapy. Cancer Discov 4, 522–526 (2014)

  68. J. Eckl, A. Buchner, P.U. Prinz, R. Riesenberg, S.I. Siegert, R. Kammerer, P.J. Nelson, E. Noessner, Transcript signature predicts tissue NK cell content and defines renal cell carcinoma subgroups independent of TNM staging. J Mol Med 90, 55–66 (2012)

    CAS  PubMed  Google Scholar 

  69. S.P. Schantz, N.G. Ordonez, Quantitation of natural killer cell function and risk of metastatic poorly differentiated head and neck cancer. Nat Immun Cell Growth Regul 10, 278–288 (1991)

    CAS  PubMed  Google Scholar 

  70. P. Carrega, B. Morandi, R. Costa, G. Frumento, G. Forte, G. Altavilla, G.B. Ratto, M.C. Mingari, L. Moretta, G. Ferlazzo, Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(−) cells and display an impaired capability to kill tumor cells. Cancer 112, 863–875 (2008)

    PubMed  Google Scholar 

  71. K.B. Lupo, S. Matosevic, Natural killer cells as allogeneic effectors in adoptive Cancer immunotherapy. Cancers 11, 6 (2019)

    Google Scholar 

  72. A. Stojanovic, A. Cerwenka, Natural killer cells and solid tumors. J Innate Immun 3, 355–364 (2011)

    PubMed  Google Scholar 

  73. G. Habif, A. Crinier, P. André, E. Vivier, E. Narni-Mancinelli, Targeting natural killer cells in solid tumors. Cell Mol Immunol 16, 415–422 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. T.N. Dao, S. Matosevic, Immunometabolic responses of natural killer cells to inhibitory tumor microenvironment checkpoints. Immunometabolism 1, e190003 (2019)

    Google Scholar 

  75. A. Zingoni, R. Molfetta, C. Fionda, A. Soriani, R. Paolini, M. Cippitelli, C. Cerboni, A. Santoni, NKG2D and Its Ligands: “One for All, All for One.” Front Immunol 9, 476 (2018)

  76. C.A. Crane, S.J. Han, J.J. Barry, B.J. Ahn, L.L. Lanier, A.T. Parsa, TGF-β downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro-Oncology 12, 7–13 (2009)

  77. J.C. Lee, K.M. Lee, D.W. Kim, D.S. Heo, Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172, 7335–7340 (2004)

    CAS  PubMed  Google Scholar 

  78. C.D. Cluxton, C. Spillane, S.A. O’Toole, O. Sheils, C.M. Gardiner, J.J. O’Leary, Suppression of natural killer cell NKG2D and CD226 anti-tumour cascades by platelet cloaked cancer cells: Implications for the metastatic cascade. PLoS One 14, e0211538 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. H. Saito, T. Osaki, M. Ikeguchi, Decreased NKG2D expression on NK cells correlates with impaired NK cell function in patients with gastric cancer. Gastric Cancer 15, 27–33 (2012)

    CAS  PubMed  Google Scholar 

  80. D. Schmiedel, O. Mandelboim, NKG2D ligands-critical targets for Cancer immune escape and therapy. Front Immunol 9, 2040 (2018)

    PubMed  PubMed Central  Google Scholar 

  81. E.M. de Kruijf, A. Sajet, J.G.H. van Nes, H. Putter, V.T.H.B.M. Smit, R.A. Eagle, I. Jafferji, J. Trowsdale, G.J. Liefers, C.J.H. van de Velde, P.J.K. Kuppen, NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: An observational study. BMC Cancer 12, 24 (2012)

  82. G. Chitadze, J. Bhat, M. Lettau, O. Janssen, D. Kabelitz, Generation of soluble NKG2D ligands: Proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol 78, 120–129 (2013)

    CAS  PubMed  Google Scholar 

  83. K. Kono, A. Takahashi, F. Ichihara, H. Sugai, H. Fujii, Y. Matsumoto, Impaired antibody-dependent cellular cytotoxicity mediated by herceptin in patients with gastric cancer. Cancer Res 62, 5813–5817 (2002)

    CAS  PubMed  Google Scholar 

  84. G. Peruzzi, L. Femnou, A. Gil-Krzewska, F. Borrego, J. Weck, K. Krzewski, J.E. Coligan, Membrane-type 6 matrix metalloproteinase regulates the activation-induced downmodulation of CD16 in human primary NK cells. J Immunol 191, 1883–1894 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. R. Romee, B. Foley, T. Lenvik, Y. Wang, B. Zhang, D. Ankarlo, X. Luo, S. Cooley, M. Verneris, B. Walcheck, J. Miller, NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 121, 3599–3608 (2013)

  86. P. Darvin, S.M. Toor, V. Sasidharan Nair, E. Elkord, Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med 50, 165 (2018)

    CAS  PubMed Central  Google Scholar 

  87. S.C. Wei, C.R. Duffy, J.P. Allison, Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8, 1069–1086 (2018)

  88. T. Kamiya, S.V. Seow, D. Wong, M. Robinson, D. Campana, Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J Clin Invest 130, 2094–2106 (2019)

    Google Scholar 

  89. E. Le Dréan, F. Vély, L. Olcese, A. Cambiaggi, S. Guia, G. Krystal, N. Gervois, A. Moretta, F. Jotereau, E. Vivier, Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: Association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. Eur J Immunol 28, 264–276 (1998)

    PubMed  Google Scholar 

  90. F. Borrego, M. Masilamani, J. Kabat, T.B. Sanni, J.E. Coligan, The cell biology of the human natural killer cell CD94/NKG2A inhibitory receptor. Mol Immunol 42, 485–488 (2005)

    CAS  PubMed  Google Scholar 

  91. M. Valés-Gómez, H.T. Reyburn, R.A. Erskine, M. López-Botet, J.L. Strominger, Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-a and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 18, 4250–4260 (1999)

    PubMed  PubMed Central  Google Scholar 

  92. H. Wada, N. Matsumoto, K. Maenaka, K. Suzuki, K. Yamamoto, The inhibitory NK cell receptor CD94/NKG2A and the activating receptor CD94/NKG2C bind the top of HLA-E through mostly shared but partly distinct sets of HLA-E residues. Eur J Immunol 34, 81–90 (2004)

    CAS  PubMed  Google Scholar 

  93. C. Sun, J. Xu, Q. Huang, M. Huang, H. Wen, C. Zhang, J. Wang, J. Song, M. Zheng, H. Sun, H. Wei, W. Xiao, R. Sun, Z. Tian, High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunol 6, e1264562 (2017)

  94. S. Platonova, J. Cherfils-Vicini, D. Damotte, L. Crozet, V. Vieillard, P. Validire, P. André, M.C. Dieu-Nosjean, M. Alifano, J.F. Régnard, W.H. Fridman, C. Sautès-Fridman, I. Cremer, Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71, 5412–5422 (2011)

    CAS  PubMed  Google Scholar 

  95. M. Gillard-Bocquet, C. Caer, N. Cagnard, L. Crozet, M. Perez, W.H. Fridman, C. Sautès-Fridman, I. Cremer, Lung tumor microenvironment induces specific gene expression signature in intratumoral NK cells. Front Immunol 4, 19 (2013)

    PubMed  PubMed Central  Google Scholar 

  96. E. Mamessier, A. Sylvain, M.L. Thibult, G. Houvenaeghel, J. Jacquemier, R. Castellano, A. Gonçalves, P. André, F. Romagné, G. Thibault, P. Viens, D. Birnbaum, F. Bertucci, A. Moretta, D. Olive, Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 121, 3609–3622 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  97. K. Stringaris, T. Sekine, A. Khoder, A. Alsuliman, B. Razzaghi, R. Sargeant, J. Pavlu, G. Brisley, H. de Lavallade, A. Sarvaria, D. Marin, S. Mielke, J.F. Apperley, E.J. Shpall, A.J. Barrett, K. Rezvani, Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica 99, 836–847 (2014)

  98. P. André, C. Denis, C. Soulas, C. Bourbon-Caillet, J. Lopez, T. Arnoux, M. Bléry, C. Bonnafous, L. Gauthier, A. Morel, B. Rossi, R. Remark, V. Breso, E. Bonnet, G. Habif, S. Guia, A. I. Lalanne, C. Hoffmann, O. Lantz, J. Fayette, A. Boyer-Chammard, R. Zerbib, P. Dodion, H. Ghadially, M. Jure-Kunkel, Y. Morel, R. Herbst, E. Narni-Mancinelli, R. B. Cohen, E. Vivier, Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743 (2018)

  99. M. Benevolo, M. Mottolese, E. Tremante, F. Rollo, M.G. Diodoro, C. Ercolani, I. Sperduti, E. Lo Monaco, M. Cosimelli, P. Giacomini, High expression of HLA-E in colorectal carcinoma is associated with a favorable prognosis. J Transl Med 9, 184 (2011)

    PubMed  PubMed Central  Google Scholar 

  100. T. van Hall, P. André, A. Horowitz, D. F. Ruan, L. Borst, R. Zerbib, E. Narni-Mancinelli, S. H van der Burg, E. Vivier. Monalizumab: Inhibiting the novel immune checkpoint NKG2A. J ImmunoTher Cancer 7, 263 (2019)

  101. B.C. Creelan, S.J. Antonia, The NKG2A immune checkpoint — A new direction in cancer immunotherapy. Nat Rev Clin Oncol 16, 277 (2019)

    CAS  PubMed  Google Scholar 

  102. C. Pfeifer, A.J. Highton, S. Peine, J. Sauter, A.H. Schmidt, M.J. Bunders, M. Altfeld, C. Körner, Natural killer cell education is associated with a distinct glycolytic profile. Front Immunol 9, 3020 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Y. Liu, Y. Cheng, Y. Xu, Z. Wang, X. Du, C. Li, J. Peng, L. Gao, X. Liang, C. Ma, Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene 36, 6143–6153 (2017)

  104. J. Hsu, J.J. Hodgins, M. Marathe, C.J. Nicolai, M.C. Bourgeois-Daigneault, T.N. Trevino, C.S. Azimi, A.K. Scheer, H.E. Randolph, T.W. Thompson, L. Zhang, A. Iannello, N. Mathur, K.E. Jardine, G.A. Kirn, J.C. Bell, M.W. McBurney, D.H. Raulet, M. Ardolino, Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest 128, 4654–4668 (2018)

    PubMed  PubMed Central  Google Scholar 

  105. D. Sarhan, K.L. Hippen, A. Lemire, S. Hying, X. Luo, T. Lenvik, J. Curtsinger, Z. Davis, B. Zhang, S. Cooley, F. Cichocki, B.R. Blazar, J.S. Miller, Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol Res 6, 766–775 (2018)

  106. Y. Huang, Z. Chen, J.H. Jang, M.S. Baig, G. Bertolet, C. Schroeder, S. Huang, Q. Hu, Y. Zhao, D.E. Lewis, L. Qin, M.X. Zhu, D. Liu, PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse. J Allergy Clin Immunol 142, 1311–1321 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  107. A. Beldi-Ferchiou, M. Lambert, S. Dogniaux, F. Vély, E. Vivier, D. Olive, S. Dupuy, F. Levasseur, D. Zucman, C. Lebbé, D. Sène, C. Hivroz, S. Caillat-Zucman, PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7, 72961–72977 (2016)

  108. S.J. Blake, W.C. Dougall, J.J. Miles, M.W.L. Teng, M.J. Smyth, Molecular pathways: Targeting CD96 and TIGIT for Cancer immunotherapy. Clin Cancer Res 22, 5183–5188 (2016)

    CAS  PubMed  Google Scholar 

  109. N. Stanietsky, H. Simic, J. Arapovic, A. Toporik, O. Levy, A. Novik, Z. Levine, M. Beiman, L. Dassa, H. Achdout, N. Stern-Ginossar, P. Tsukerman, S. Jonjic, O. Mandelboim, The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106, 17858–17863 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  110. W.C. Dougall, S. Kurtulus, M.J. Smyth, A.C. Anderson, TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol Rev 276, 112–120 (2017)

    CAS  PubMed  Google Scholar 

  111. Q. Zhang, J. Bi, X. Zheng, Y. Chen, H. Wang, W. Wu, Z. Wang, Q. Wu, H. Peng, H. Wei, R. Sun, Z. Tian, Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 19, 723–732 (2018)

    CAS  PubMed  Google Scholar 

  112. K.F. Stengel, K. Harden-Bowles, X. Yu, L. Rouge, J. Yin, L. Comps-Agrar, C. Wiesmann, J.F. Bazan, D.L. Eaton, J.L. Grogan, Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A 109, 5399–5404 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  113. S. Liu, H. Zhang, M. Li, D. Hu, C. Li, B. Ge, B. Jin, Z. Fan, Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20, 456–464 (2013)

    CAS  PubMed  Google Scholar 

  114. A.M. Farkas, F. Audenet, H. Anastos, M. Galsky, J. Sfakianos, N. Bhardwaj, Tim-3 and TIGIT mark natural killer cells susceptible to effector dysfunction in human bladder cancer. J Immunol 200, 124.14 (2018)

    Google Scholar 

  115. L.E. Lucca, P.P. Axisa, E.R. Singer, N.M. Nolan, M. Dominguez-Villar, D.A. Hafler, TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight 4, e124427 (2019)

    PubMed Central  Google Scholar 

  116. M. Molgora, E. Bonavita, A. Ponzetta, F. Riva, M. Barbagallo, S. Jaillon, B. Popović, G. Bernardini, E. Magrini, F. Gianni, S. Zelenay, S. Jonjić, A. Santoni, C. Garlanda, A. Mantovani, IL-1R8 is a checkpoint in NK cells regulating anti-tumor and anti-viral activity. Nature 551, 110–114 (2017)

  117. L. Long, X. Zhang, F. Chen, Q. Pan, P. Phiphatwatchara, Y. Zeng, H. Chen, The promising immune checkpoint LAG-3: From tumor microenvironment to cancer immunotherapy. Genes Cancer 9, 176–189 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  118. B. Huard, M. Tournier, F. Triebel, LAG-3 does not define a specific mode of natural killing in human. Immunol Lett 61, 109–112 (1998)

    CAS  PubMed  Google Scholar 

  119. A.C. Anderson, N. Joller, V.K. Kuchroo, Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016)

  120. P.A. Ascierto, I. Melero, S. Bhatia, P. Bono, R.E. Sanborn, E.J. Lipson, M.K. Callahan, T. Gajewski, C.A. Gomez-Roca, F.S. Hodi, G. Curigliano, M. Nyakas, M. Preusser, Y. Koguchi, M. Maurer, R. Clynes, P. Mitra, S. Suryawanshi, E. Muñoz-Couselo, Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. J Clin Oncol 35, 9520–9520 (2017)

    Google Scholar 

  121. J.M. Wang, Y.Q. Cheng, L. Shi, R.S. Ying, X.Y. Wu, G.Y. Li, J.P. Moorman, Z.Q. Yao, KLRG1 negatively regulates natural killer cell functions through the Akt pathway in individuals with chronic hepatitis C virus infection. J Virol 87, 11626–11636 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  122. B. Müller-Durovic, A. Lanna, L.P. Covre, R.S. Mills, S.M. Henson, A.N. Akbar, Killer cell lectin-like receptor G1 (KLRG1) inhibits NK cell function through activation of AMP-activated protein kinase. J Immunol 197, 2891–2899 (2016)

    PubMed  PubMed Central  Google Scholar 

  123. R. B. Delconte, T. B. Kolesnik, L. F. Dagley, J. Rautela, W. Shi, E. M. Putz, K. Stannard, J. G. Zhang, C. Teh, M. Firth, T. Ushiki, C. E. Andoniou, M. A. Degli-Esposti, P. P. Sharp, C. E. Sanvitale, G. Infusini, N. P. D. Liau, E. M. Linossi, C. J. Burns, S. Carotta, D. H. D. Gray, C. Seillet, D. S. Hutchinson, G. T. Belz, A. I. Webb, W. S. Alexander, S. S. Li, A. N. Bullock, J. J. Babon, M. J. Smyth, S. E. Nicholson, N. D. Huntington, CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat Immunol 17, 816–824 (2016)

  124. E.M. Putz, C. Guillerey, K. Kos, K. Stannard, K. Miles, R.B. Delconte, K. Takeda, S.E. Nicholson, N.D. Huntington, M.J. Smyth, Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. OncoImmunol 6, e1267892 (2017)

  125. E.C. So, A. Khaladj-Ghom, Y. Ji, J. Amin, Y. Song, E. Burch, H. Zhou, H. Sun, S. Chen, S. Bentzen, R. Hertzano, X. Zhang, S.E. Strome, NK cell expression of Tim-3: First impressions matter. Immunobiology. 224, 362–370 (2019)

    CAS  PubMed  Google Scholar 

  126. L.C. Ndhlovu, S. Lopez-Vergès, J.D. Barbour, R.B. Jones, A.R. Jha, B.R. Long, E.C. Schoeffler, T. Fujita, D.F. Nixon, L.L. Lanier, Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119, 3734–3743 (2012)

  127. L.Y. Xu, D.D. Chen, J.Y. He, C.C. Lu, X.G. Liu, H.B. Le, C.Y. Wang, Y.K. Zhang, Tim-3 expression by peripheral natural killer cells and natural killer T cells increases in patients with lung cancer--reduction after surgical resection. Asian Pac J Cancer Prev 15, 9945–9948 (2014)

    PubMed  Google Scholar 

  128. L. Xu, Y. Huang, L. Tan, W. Yu, D. Chen, C. Lu, J. He, G. Wu, X. Liu, Y. Zhang, Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int Immunopharmacol 29, 635–641 (2015)

    CAS  PubMed  Google Scholar 

  129. E. Batlle, J. Massagué, Transforming growth factor-β signaling in immunity and Cancer. Immunity 50, 924–940 (2019)

  130. S. Colak, P. Ten Dijke, Targeting TGF-β signaling in Cancer. Trends Cancer 3, 56–71 (2017)

    CAS  PubMed  Google Scholar 

  131. R. Trotta, J. Dal Col, J. Yu, D. Ciarlariello, B. Thomas, X. Zhang, J. Allard, M. Wei, H. Mao, J.C. Byrd, D. Perrotti, M.A. Caligiuri, TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol 181, 3784–3792 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  132. B. Han, F.Y. Mao, Y.L. Zhao, Y.P. Lv, Y.S. Teng, M. Duan, W. Chen, P. Cheng, T.T. Wang, Z.Y. Liang, J.Y. Zhang, Y.G. Liu, G. Guo, Q.M. Zou, Y. Zhuang, L.S. Peng, Altered NKp30, NKp46, NKG2D, and DNAM-1 expression on circulating NK cells is associated with tumor progression in human gastric cancer. J Immunol Res 2018, 6248590 (2018)

  133. Y. Gao, F. Souza-Fonseca-Guimaraes, T. Bald, S.S. Ng, A. Young, S.F. Ngiow, J. Rautela, J. Straube, N. Waddell, S.J. Blake, J. Yan, L. Bartholin, J.S. Lee, E. Vivier, K. Takeda, M. Messaoudene, L. Zitvogel, M.W.L. Teng, G.T. Belz, C.R. Engwerda, N.D. Huntington, K. Nakamura, M. Hölzel, M.J. Smyth, Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol 18, 1004–1015 (2017)

    CAS  PubMed  Google Scholar 

  134. A. Dahmani, J.S. Delisle, TGF-β in T cell biology: Implications for cancer immunotherapy. Cancers 10, 6 (2018)

  135. H. Li, Y. Han, Q. Guo, M. Zhang, X. Cao, Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182, 240–249 (2009)

    CAS  PubMed  Google Scholar 

  136. Z. Li, Y. Pang, S.K. Gara, B.R. Achyut, C. Heger, P.K. Goldsmith, S. Lonning, L. Yang, Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-β in breast cancer progression. Int J Cancer 131, 2584–2595 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Z.G. Fridlender, J. Sun, S. Kim, V. Kapoor, G. Cheng, L. Ling, G.S. Worthen, S.M. Albelda, Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16, 183–119 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  138. J.C. Mbongue, D.A. Nicholas, T.W. Torrez, N.S. Kim, A.F. Firek, W.H.R. Langridge, The role of Indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines 3, 703–729 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  139. M. Foroutan, J. Cursons, S. Hediyeh-Zadeh, E.W. Thompson, M.J. Davis, A transcriptional program for detecting TGFβ-induced EMT in cancer. Mol Cancer Res 15, 619–631 (2017)

  140. S. Viel, A. Marçais, F.S.F. Guimaraes, R. Loftus, J. Rabilloud, M. Grau, S. Degouve, S. Djebali, A. Sanlaville, E. Charrier, J. Bienvenu, J.C. Marie, C. Caux, J. Marvel, L. Town, N.D. Huntington, L. Bartholin, D. Finlay, M.J. Smyth, T. Walzer, TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 9, 415 (2016)

    Google Scholar 

  141. V. Zaiatz-Bittencourt, D.K. Finlay, C.M. Gardiner, Canonical TGF-β signaling pathway represses human NK cell metabolism. J Immunol 200, 3934–3941 (2018)

    CAS  PubMed  Google Scholar 

  142. L. Antonioli, C. Blandizzi, P. Pacher, G. Haskó, Immunity, inflammation and cancer: A leading role for adenosine. Nat Rev Cancer 13, 842–857 (2013)

    CAS  PubMed  Google Scholar 

  143. J. Stagg, M.J. Smyth, Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010)

  144. A. Ohta, A metabolic immune checkpoint: Adenosine in tumor microenvironment. Front Immunol 7, 109 (2016)

    PubMed  PubMed Central  Google Scholar 

  145. A. Young, D. Mittal, J. Stagg, M.J. Smyth, Targeting cancer-derived adenosine: New therapeutic approaches. Cancer Discov 4, 879–888 (2014)

    CAS  PubMed  Google Scholar 

  146. A. Young, S.F. Ngiow, D.S. Barkauskas, E. Sult, C. Hay, S.J. Blake, Q. Huang, J. Liu, K. Takeda, M.W. Teng, Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30, 391–403 (2016)

    CAS  PubMed  Google Scholar 

  147. J. Wang, S. Matosevic, Adenosinergic signaling as a target for natural killer cell immunotherapy. J Mol Med 96, 903–913 (2018)

    CAS  PubMed  Google Scholar 

  148. A. Greenhough, H.J.M. Smartt, A.E. Moore, H.R. Roberts, A.C. Williams, C. Paraskeva, A. Kaidi, The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30, 377–386 (2009)

  149. D. Wang, R.N. DuBois, An inflammatory mediator, prostaglandin E2, in colorectal cancer. Cancer J 19, 502–510 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  150. S. Zelenay, A. G. van der Veen, J. P. Böttcher, K. J. Snelgrove, N. Rogers, S. E. Acton, P. Chakravarty, M. R. Girotti, R. Marais, S. A. Quezada, E. Sahai, C. Reis e Sousa, Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015)

  151. D. Wang, R.N. DuBois, The role of prostaglandin E(2) in tumor-associated immunosuppression. Trends Mol Med 22, 1–3 (2016)

    PubMed  Google Scholar 

  152. J. Ke, Y. Yang, Q. Che, F. Jiang, H. Wang, Z. Chen, M. Zhu, H. Tong, H. Zhang, X. Yan, X. Wang, F. Wang, Y. Liu, C. Dai, X. Wan, Prostaglandin E2 (PGE2) promotes proliferation and invasion by enhancing SUMO-1 activity via EP4 receptor in endometrial cancer. Tumour Biol 37, 12203–12211 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  153. B.C. Lee, H.S. Kim, T.H. Shin, I. Kang, J.Y. Lee, J.J. Kim, H.K. Kang, Y. Seo, S. Lee, K.R. Yu, S.W. Choi, K.S. Kang, PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact. Sci Rep 6, 26298 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  154. P. Kalinski, Regulation of immune responses by prostaglandin E2. J Immunol 188, 21–28 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  155. C.H.M.J. Van Elssen, J. Vanderlocht, T. Oth, B.L.M.G. Senden-Gijsbers, W.T.V. Germeraad, G.M.J. Bos, Inflammation-restraining effects of prostaglandin E2 on natural killer-dendritic cell (NK-DC) interaction are imprinted during DC maturation. Blood 118, 2473–2482 (2011)

  156. J. P. Böttcher, E. Bonavita, P. Chakravarty, H. Blees, M. Cabeza-Cabrerizo, S. Sammicheli, N. C. Rogers, E. Sahai, S. Zelenay, C. Reis e Sousa. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018)

  157. M.Y. Jung, H.S. Kuehn, M. Beaven, D. Metcalfe, A. Gilfillan, Prostaglandin E2 induces activation of mTORC1 and mTORC2 in mast cells: Selective utilization of mTORC2 for the regulation of chemotaxis and mediator release. J Immunol 186, 151.6–151.6 (2011)

    Google Scholar 

  158. D. Holt, X. Ma, N. Kundu, P.D. Collin, A.M. Fulton, Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4. J Immunother 35, 179–188 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  159. S. Ganapathy-Kanniappan, J.F.H. Geschwind, Tumor glycolysis as a target for cancer therapy: Progress and prospect. Mol Cancer 12, 152 (2013)

    PubMed  PubMed Central  Google Scholar 

  160. Z. Husain, Y. Huang, P. Seth, V.P. Sukhatme, Tumor-derived lactate modifies antitumor immune response: Effect on myeloid-derived suppressor cells and NK cells. J Immunol 191, 1486–1495 (2013)

    CAS  PubMed  Google Scholar 

  161. A. Brand, K. Singer, G. E. Koehl, M. Kolitzus, G. Schoenhammer, A. Thiel, C. Matos, C. Bruss, S. Klobuch, K. Peter, M. Kastenberger, C. Bogdan, U. Schleicher, A. Mackensen, E. Ullrich, S. Fichtner-Feigl, R. Kesselring, M. Mack, U. Ritter, M. Schmid, C. Blank, K. Dettmer, P. J. Oefner, P. Hoffmann, S. Walenta, E. K. Geissler, J. Pouyssegur, A. Villunger, A. Steven, B. Seliger, S. Schreml, S. Haferkamp, E. Kohl, S. Karrer, M. Berneburg, W. Herr, W. Mueller-Klieser, K. Renner, M. Kreutz, LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24, 657–671 (2016)

  162. V. Huber, C. Camisaschi, A. Berzi, S. Ferro, L. Lugini, T. Triulzi, A. Tuccitto, E. Tagliabue, C. Castelli, L. Rivoltini, Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol 43, 74–89 (2017)

    CAS  PubMed  Google Scholar 

  163. N. Rohani, L. Hao, M.S. Alexis, B.A. Joughin, K. Krismer, M.N. Moufarrej, A.R. Soltis, D.A. Lauffenburger, M.B. Yaffe, C.B. Burge, S.N. Bhatia, F.B. Gertler, Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res 79, 1952–1966 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Y. Long, Z. Gao, X. Hu, F. Xiang, Z. Wu, J. Zhang, X. Han, L. Yin, J. Qin, L. Lan, F. Yin, Y. Wang, Downregulation of MCT4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma. Cancer Med 7, 4690–4700 (2018)

  165. E. Wennerberg, V Kremer, R. Childs, A. Lundqvist. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol Immunother 64, 225–235 (2015)

  166. V. Kremer, M.A. Ligtenberg, R. Zendehdel, C. Seitz, A. Duivenvoorden, E. Wennerberg, E. Colón, A.H. Scherman-Plogell, A. Lundqvist, Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J Immunother Cancer 5, 73 (2017)

    PubMed  PubMed Central  Google Scholar 

  167. M. Wendel, I.E. Galani, E. Suri-Payer, A. Cerwenka, Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68, 8437–8445 (2008)

    CAS  PubMed  Google Scholar 

  168. A. Brech, T. Ahlquist, R.A. Lothe, H. Stenmark, Autophagy in tumour suppression and promotion. Mol Oncol 3, 366–375 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  169. A.C. Kimmelman, E. White, Autophagy and Tumor Metabolism Cell Metab 25, 1037–1043 (2017)

    CAS  PubMed  Google Scholar 

  170. E.Y. Liu, K.M. Ryan, Autophagy and cancer--issues we need to digest. J Cell Sci 125, 2349–2358 (2012)

    PubMed  Google Scholar 

  171. T. Mgrditchian, T. Arakelian, J. Paggetti, M.Z. Noman, E. Viry, E. Moussay, K. Van Moer, S. Kreis, C. Guerin, S. Buart, Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc Nat Acad Sci 114, E9271–E9279 (2017)

    CAS  PubMed  Google Scholar 

  172. I.K. Choi, R. Strauss, M. Richter, C.O. Yun, A. Lieber, Strategies to increase drug penetration in solid tumors. Front Oncol 3, 193 (2013)

    PubMed  PubMed Central  Google Scholar 

  173. Q.T. Le, G. Shi, H. Cao, D.W. Nelson, Y. Wang, E.Y. Chen, S. Zhao, C. Kong, D. Richardson, K.J. O’Byrne, A.J. Giaccia, A.C. Koong, Galectin-1: A link between tumor hypoxia and tumor immune privilege. J Clin Oncol 23, 8932–8941 (2005)

    CAS  PubMed  Google Scholar 

  174. V. Sundblad, L.G. Morosi, J.R. Geffner, G.A. Rabinovich, Galectin-1: A Jack-of-all-trades in the resolution of acute and chronic inflammation. J Immunol 199, 3721–3730 (2017)

    CAS  PubMed  Google Scholar 

  175. L. Astorgues-Xerri, M.E. Riveiro, A. Tijeras-Raballand, M. Serova, C. Neuzillet, S. Albert, E. Raymond, S. Faivre, Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev 40, 307–319 (2014)

    CAS  PubMed  Google Scholar 

  176. R. Wu, T. Wu, K. Wang, S. Luo, Z. Chen, M. Fan, D. Xue, H. Lu, Q. Zhuang, X. Xu, Prognostic significance of galectin-1 expression in patients with cancer: A meta-analysis. Cancer Cell Int 18, 108 (2018)

    PubMed  PubMed Central  Google Scholar 

  177. J.M. Cousin, M.J. Cloninger, The role of Galectin-1 in Cancer progression, and synthetic multivalent Systems for the Study of Galectin-1. Int J Mol Sci 17, 1566 (2016)

    PubMed Central  Google Scholar 

  178. F.C. Chou, H.Y. Chen, C.C. Kuo, H.K. Sytwu, Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci 19, 430 (2018)

    PubMed Central  Google Scholar 

  179. G.J. Baker, P. Chockley, V.N. Yadav, R. Doherty, M. Ritt, S. Sivaramakrishnan, M.G. Castro, P.R. Lowenstein, Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res 74, 5079–5090 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  180. G.J. Baker, P. Chockley, D. Zamler, M.G. Castro, P.R. Lowenstein, Natural killer cells require monocytic gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells. Oncoimmunol 5, e1163461 (2016)

  181. J. Park, S.H. Wrzesinski, E. Stern, M. Look, J. Criscione, R. Ragheb, S.M. Jay, S.L. Demento, A. Agawu, P. Licona Limon, A.F. Ferrandino, D. Gonzalez, A. Habermann, R.A. Flavell, T.M. Fahmy, Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater 11, 895–905 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  182. F. Otegbeye, E. Ojo, S. Moreton, N. Mackowski, D.A. Lee, M. de Lima, D.N. Wald, Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One 13, e0191358 (2018)

    PubMed  PubMed Central  Google Scholar 

  183. A. Young, S.F. Ngiow, Y. Gao, A.M. Patch, D.S. Barkauskas, M. Messaoudene, G. Lin, J.D. Coudert, K.A. Stannard, L. Zitvogel, A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res 78, 1003–1016 (2018)

    CAS  PubMed  Google Scholar 

  184. J. Wang, K.B. Lupo, A.M. Chambers, S. Matosevic, Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer 6, 136 (2018)

    PubMed  PubMed Central  Google Scholar 

  185. O.E. Franco, A.K. Shaw, D.W. Strand, S.W. Hayward, Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21, 33–39 (2010)

    CAS  PubMed  Google Scholar 

  186. M. Augsten, Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4, 62 (2014)

    PubMed  PubMed Central  Google Scholar 

  187. G. Valcz, F. Sipos, Z. Tulassay, B. Molnar, Y. Yagi, Importance of carcinoma-associated fibroblast-derived proteins in clinical oncology. J Clin Pathol 67, 1026–1031 (2014)

    PubMed  Google Scholar 

  188. T. Li, S. Yi, W. Liu, C. Jia, G. Wang, X. Hua, Y. Tai, Q. Zhang, G. Chen, Colorectal carcinoma-derived fibroblasts modulate natural killer cell phenotype and antitumor cytotoxicity. Med Oncol 30, 663 (2013)

    PubMed  Google Scholar 

  189. M. Balsamo, F. Scordamaglia, G. Pietra, C. Manzini, C. Cantoni, M. Boitano, P. Queirolo, W. Vermi, F. Facchetti, A. Moretta, L. Moretta, M.C. Mingari, M. Vitale, Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci U S A 106, 20847–20852 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  190. T. Inoue, K. Adachi, K. Kawana, A. Taguchi, T. Nagamatsu, A. Fujimoto, K. Tomio, A. Yamashita, S. Eguchi, H. Nishida, H. Nakamura, M. Sato, M. Yoshida, T. Arimoto, O. Wada-Hiraike, K. Oda, Y. Osuga, T. Fujii, Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor. International J Oncol 49, 1297–1304 (2016)

    CAS  Google Scholar 

  191. R. Zhang, F. Qi, F. Zhao, G. Li, S. Shao, X. Zhang, L. Yuan, Y. Feng, Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis 10, 273 (2019)

    PubMed  PubMed Central  Google Scholar 

  192. R. Francescone, D. B. Vendramini-Costa, J. Franco-Barraza, J. Wagner, A. Muir, A. N. Lau, L. Gabitova, T. Pazina, S. Gupta, T. Luong, N. Shah, D. Rollins, R. Malik, R. Thapa, D. Restifo, Y. Zhou, K. Q. Cai, H. H. Hensley, Y. Tan, W. D. Kruger, K. Devarajan, S. Balachandran, W. S. El-Deiry, M. G. V. Heiden, S. Peri, K. S. Campbell, I. Astsaturov, E. Cukierman. The NetrinG1/NGL-1 Axis promotes pancreatic tumorigenesis through cancer associated fibroblast driven nutritional support and immunosuppression. BioRxiv 330209 (2019)

  193. M.H. Townsend, G. Shrestha, R.A. Robison, K.L. O’Neill, The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 37, 163 (2018)

    PubMed  PubMed Central  Google Scholar 

  194. L.C.S. Wang, A. Lo, J. Scholler, J. Sun, R.S. Majumdar, V. Kapoor, M. Antzis, C.E. Cotner, L.A. Johnson, A.C. Durham, C.C. Solomides, C.H. June, E. Puré, S.M. Albelda, Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res 2, 154–166 (2014)

  195. Y.J. Xie, M. Dougan, N. Jailkhani, J. Ingram, T. Fang, L. Kummer, N. Momin, N. Pishesha, S. Rickelt, R.O. Hynes, H. Ploegh, Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci U S A 116, 7624–7631 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  196. A. Lo, L.C.S. Wang, J. Scholler, J. Monslow, D. Avery, K. Newick, S. O’Brien, R.A. Evans, D.J. Bajor, C. Clendenin, A.C. Durham, E.L. Buza, R.H. Vonderheide, C.H. June, S.M. Albelda, E. Puré, Tumor-promoting Desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res 75, 2800–2810 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  197. A. O’Connell, S. Wang, L.M. Weiner, Abstract A096: The potential role of fibroblast activation protein as a natural killer cell immune checkpoint. Cancer Immunol Res 7, A096–A096 (2019)

  198. C. Hutmacher, N. Núñez, A.R. Liuzzi, B. Becher, D. Neri, Targeted delivery of IL2 to the tumor stroma potentiates the action of immune checkpoint inhibitors by preferential activation of NK and CD8+ T cells. Cancer Immunol. Res 7, 572–583 (2019)

  199. M. Moschetta, F. Pretto, A. Berndt, K. Galler, P. Richter, A. Bassi, P. Oliva, E. Micotti, G. Valbusa, K. Schwager, M. Kaspar, E. Trachsel, H. Kosmehl, M.R. Bani, D. Neri, R. Giavazzi, Paclitaxel enhances therapeutic efficacy of the F8-IL2 Immunocytokine to EDA-fibronectin–positive metastatic human melanoma xenografts. Cancer Res 72, 1814–1824 (2012)

    CAS  PubMed  Google Scholar 

  200. J. Tchou, Y. Zhao, B.L. Levine, P.J. Zhang, M.M. Davis, J.J. Melenhorst, I. Kulikovskaya, A.L. Brennan, X. Liu, S.F. Lacey, A.D. Posey, A.D. Williams, A. So, J.R. Conejo-Garcia, G. Plesa, R.M. Young, S. McGettigan, J. Campbell, R.H. Pierce, J.M. Matro, A.M. DeMichele, A.S. Clark, L.J. Cooper, L.M. Schuchter, R.H. Vonderheide, C.H. June, Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 5, 1152–1161 (2017)

  201. A. Klampatsa, D.Y. Achkova, D.M. Davies, A.C. Parente-Pereira, N. Woodman, J. Rosekilly, G. Osborne, T. Thayaparan, A. Bille, M. Sheaf, J.F. Spicer, J. King, J. Maher, Intracavitary “T4 immunotherapy” of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells. Cancer Lett 393, 52–59 (2017)

    CAS  PubMed  Google Scholar 

  202. S.J. Priceman, D. Tilakawardane, B. Jeang, B. Aguilar, J.P. Murad, A.K. Park, W.C. Chang, J.R. Ostberg, J. Neman, R. Jandial, J. Portnow, S.J. Forman, C.E. Brown, Regional delivery of chimeric antigen receptor-engineered T cells effectively targets HER2+ breast Cancer metastasis to the brain. Clin Cancer Res 24, 95–105 (2018)

    CAS  PubMed  Google Scholar 

  203. A. Nellan, C. Rota, R. Majzner, C.M. Lester-McCully, A.M. Griesinger, J.M. Mulcahy Levy, N.K. Foreman, K.E. Warren, D.W. Lee, Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. J Immunother Cancer 6, 30 (2018)

    PubMed  PubMed Central  Google Scholar 

  204. S.C. Katz, G.R. Point, M. Cunetta, M. Thorn, P. Guha, N.J. Espat, C. Boutros, N. Hanna, R.P. Junghans, Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther 23, 142–148 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  205. S. Genßler, M.C. Burger, C. Zhang, S. Oelsner, I. Mildenberger, M. Wagner, J.P. Steinbach, W.S. Wels, Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunol 5, e1119354 (2016)

  206. C. Zhang, M.C. Burger, L. Jennewein, S. Genßler, K. Schönfeld, P. Zeiner, E. Hattingen, P.N. Harter, M. Mittelbronn, T. Tonn, J.P. Steinbach, W.S. Wels, ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst 108(5) (2016)

  207. J. Han, J. Chu, W. Keung Chan, J. Zhang, Y. Wang, J.B. Cohen, A. Victor, W.H. Meisen, S.H. Kim, P. Grandi, Q.E. Wang, X. He, I. Nakano, E.A. Chiocca, J.C. Glorioso Iii, B. Kaur, M.A. Caligiuri, J. Yu, CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep 5, 11483 (2016)

    Google Scholar 

  208. X. Chen, J. Han, J. Chu, L. Zhang, J. Zhang, C. Chen, L. Chen, Y. Wang, H. Wang, L. Yi, J.B. Elder, Q.E. Wang, X. He, B. Kaur, E.A. Chiocca, J. Yu, A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 7, 27764–27777 (2016)

    PubMed  PubMed Central  Google Scholar 

  209. V. Bachanova, S. Cooley, T.E. Defor, M.R. Verneris, B. Zhang, D.H. McKenna, J. Curtsinger, A. Panoskaltsis-Mortari, D. Lewis, K. Hippen, P. McGlave, D.J. Weisdorf, B.R. Blazar, J.S. Miller, Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood 123, 3855–3863 (2014)

  210. E. Liu, Y. Tong, G. Dotti, H. Shaim, B. Savoldo, M. Mukherjee, J. Orange, X. Wan, X. Lu, A. Reynolds, M. Gagea, P. Banerjee, R. Cai, M.H. Bdaiwi, R. Basar, M. Muftuoglu, L. Li, D. Marin, W. Wierda, M. Keating, R. Champlin, E. Shpall, K. Rezvani, Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2017)

    PubMed  PubMed Central  Google Scholar 

  211. P.W. Stacpoole, Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) Axis in Cancer. J Natl Cancer Inst 109, 11 (2017)

    Google Scholar 

  212. N. Assmann, K.L. O’Brien, R.P. Donnelly, L. Dyck, V. Zaiatz-Bittencourt, R.M. Loftus, P. Heinrich, P.J. Oefner, L. Lynch, C.M. Gardiner, K. Dettmer, D.K. Finlay, Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol 18, 1197–1206 (2017)

    CAS  PubMed  Google Scholar 

  213. M. Sukumar, J. Liu, Y. Ji, M. Subramanian, J.G. Crompton, Z. Yu, R. Roychoudhuri, D.C. Palmer, P. Muranski, E.D. Karoly, R.P. Mohney, C.A. Klebanoff, A. Lal, T. Finkel, N.P. Restifo, L. Gattinoni, Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 123, 4479–4488 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  214. J.G. Crompton, M. Sukumar, R. Roychoudhuri, D. Clever, A. Gros, R.L. Eil, E. Tran, K.I. Hanada, Z. Yu, D.C. Palmer, S.P. Kerkar, R.D. Michalek, T. Upham, A. Leonardi, N. Acquavella, E. Wang, F.M. Marincola, L. Gattinoni, P. Muranski, M.S. Sundrud, C.A. Klebanoff, S.A. Rosenberg, D.T. Fearon, N.P. Restifo, Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 75, 296–305 (2015)

    CAS  PubMed  Google Scholar 

  215. O.U. Kawalekar, R.S. O’Connor, J.A. Fraietta, L. Guo, S.E. McGettigan, A.D. Posey, P.R. Patel, S. Guedan, J. Scholler, B. Keith, N.W. Snyder, I.A. Blair, M.C. Milone, C.H. June, Distinct signaling of Coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 44, 380–390 (2016)

    CAS  PubMed  Google Scholar 

  216. E.M. McWilliams, J.M. Mele, C. Cheney, E.A. Timmerman, F. Fiazuddin, E.J. Strattan, X. Mo, J.C. Byrd, N. Muthusamy, F.T. Awan, Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia. Oncoimmunol 5, e1226720 (2016)

  217. T.N. Dao, S. Matosevic, Immunometabolic responses of natural killer cells to inhibitory tumor microenvironment checkpoints. Immunometabolism 1, e20190003 (2019)

    Google Scholar 

  218. M. Shevtsov, G. Multhoff, Immunological and translational aspects of NK cell-based antitumor immunotherapies. Front Immunol 7, 492 (2016)

    PubMed  PubMed Central  Google Scholar 

  219. Z. Gao, K. Dong, H. Zhang, The roles of CD73 in cancer. Biomed Res Int 2014, 460654 (2014)

    PubMed  PubMed Central  Google Scholar 

  220. M. Turcotte, K. Spring, S. Pommey, G. Chouinard, I. Cousineau, J. George, G.M. Chen, D.M. Gendoo, B. Haibe-Kains, T. Karn, CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res 75, 4494–4503 (2015)

    CAS  PubMed  Google Scholar 

  221. Z. Gao, H. Wang, F. Lin, X. Wang, M. Long, H. Zhang, K. Dong, CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity. BMC Cancer 17, 135 (2017)

    PubMed  PubMed Central  Google Scholar 

  222. S. Loi, S. Pommey, B. Haibe-Kains, P.A. Beavis, P.K. Darcy, M.J. Smyth, J. Stagg, CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110, 11091–11096 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  223. M. Lupia, F. Angiolini, G. Bertalot, S. Freddi, K.F. Sachsenmeier, E. Chisci, B. Kutryb-Zajac, S. Confalonieri, R.T. Smolenski, R. Giovannoni, CD73 regulates Stemness and epithelial-mesenchymal transition in ovarian Cancer-initiating cells. Stem Cell Rep 10, 1412–1425 (2018)

    CAS  Google Scholar 

  224. L. Antonioli, C. Blandizzi, F. Malavasi, D. Ferrari, G. Haskó, Anti-CD73 immunotherapy: A viable way to reprogram the tumor microenvironment. Oncoimmunol 5, e1216292 (2016)

  225. J. C. Geoghegan, G. Diedrich, X. Lu, K. Rosenthal, K. F. Sachsenmeier, H. Wu, W. F. Dall’Acqua, M. M. Damschroder, Inhibition of CD73 AMP hhydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action. MAbs 8, 454–467 (2016)

  226. I. Perrot, H.A. Michaud, M. Giraudon-Paoli, S. Augier, A. Docquier, L. Gros, R. Courtois, C. Déjou, D. Jecko, O. Becquart, H. Rispaud-Blanc, L. Gauthier, B. Rossi, S. Chanteux, N. Gourdin, B. Amigues, A. Roussel, A. Bensussan, J.F. Eliaou, J. Bastid, F. Romagné, Y. Morel, E. Narni-Mancinelli, E. Vivier, C. Paturel, N. Bonnefoy, Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep 27, 2411–2425 (2019)

  227. H.R. Lee, C.H. Son, E.K. Koh, J.H. Bae, C.D. Kang, K. Yang, Y.S. Park, Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody. Sci Rep 7, 11075 (2017)

    PubMed  PubMed Central  Google Scholar 

  228. S. Kumar, Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology 154, 383–393 (2018)

  229. M. Sabry, A. Zubiak, S.P. Hood, P. Simmonds, H. Arellano-Ballestero, E. Cournoyer, M. Mashar, A.G. Pockley, M.W. Lowdell, Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures. PLoS One 14, e0218674 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  230. M. Felices, T.R. Lenvik, Z.B. Davis, J.S. Miller, D.A. Vallera, Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol 1441, 333–346 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  231. J.U. Schmohl, M. Felices, E. Taras, J.S. Miller, D.A. Vallera, Enhanced ADCC and NK cell activation of an Anticarcinoma bispecific antibody by genetic insertion of a modified IL-15 cross-linker. Mol Ther 24, 1312–1322 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  232. D.A. Vallera, M. Felices, R. McElmurry, V. McCullar, X. Zhou, J.U. Schmohl, B. Zhang, A.J. Lenvik, A. Panoskaltsis-Mortari, M.R. Verneris, J. Tolar, S. Cooley, D.J. Weisdorf, B.R. Blazar, J.S. Miller, IL15 Trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res 22, 3440–3450 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  233. L. Gauthier, A. Morel, N. Anceriz, B. Rossi, A. Blanchard-Alvarez, G. Grondin, S. Trichard, C. Cesari, M. Sapet, F. Bosco, H. Rispaud-Blanc, F. Guillot, S. Cornen, A. Roussel, B. Amigues, G. Habif, F. Caraguel, S. Arrufat, R. Remark, F. Romagné, Y. Morel, E. Narni-Mancinelli, E. Vivier, Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713 (2019)

  234. X. Yuan, H. Wu, H. Bu, J. Zhou, H. Zhang, Targeting the immunity protein kinases for immuno-oncology. Eur J Med Chem 163, 413–427 (2019)

    CAS  PubMed  Google Scholar 

  235. J.M. Yingling, W.T. McMillen, L. Yan, H. Huang, J.S. Sawyer, J. Graff, D.K. Clawson, K.S. Britt, B.D. Anderson, D.W. Beight, D. Desaiah, M.M. Lahn, K.A. Benhadji, M.J. Lallena, R.B. Holmgaard, X. Xu, F. Zhang, J.R. Manro, P.W. Iversen, C.V. Iyer, R.A. Brekken, M.D. Kalos, K.E. Driscoll, Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget 9, 6659–6677 (2018)

    PubMed  Google Scholar 

  236. H.C. Tran, Z. Wan, M.A. Sheard, J. Sun, J.R. Jackson, J. Malvar, Y. Xu, L. Wang, R. Sposto, E.S. Kim, S. Asgharzadeh, R.C. Seeger, TGFβR1 Blockade with Galunisertib (LY2157299) Enhances Anti-Neuroblastoma Activity of the Anti-GD2 Antibody Dinutuximab (ch14.18) with Natural Killer Cells. Clin. Cancer Res 23, 804–813 (2017)

    CAS  PubMed  Google Scholar 

  237. D. Vijayan, A. Young, M.W. Teng, M.J. Smyth, Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17, 709–724 (2017)

    CAS  PubMed  Google Scholar 

  238. R.D. Leone, L.A. Emens, Targeting adenosine for cancer immunotherapy. J Immunother Cancer 6, 57 (2018)

  239. R.D. Leone, Y.C. Lo, J.D. Powell, A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy. Comp Struct Biotechnol J 13, 265–272 (2015)

    CAS  Google Scholar 

  240. M. Congreve, G.A. Brown, A. Borodovsky, M.L. Lamb, Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin Drug Discov 13, 997–1003 (2018)

    CAS  PubMed  Google Scholar 

  241. K. Sek, C. Mølck, G.D. Stewart, L. Kats, P.K. Darcy, P.A. Beavis, Targeting adenosine receptor signaling in Cancer immunotherapy. Int J Mol Sci 19, 12 (2018)

    Google Scholar 

  242. P.A. Beavis, U. Divisekera, C. Paget, M.T. Chow, L.B. John, C. Devaud, K. Dwyer, J. Stagg, M.J. Smyth, P.K. Darcy, Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A 110, 14711–14716 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  243. A. Young, S.F. Ngiow, J. Madore, J. Reinhardt, J. Landsberg, A. Chitsazan, J. Rautela, T. Bald, D.S. Barkauskas, E. Ahern, N.D. Huntington, D. Schadendorf, G.V. Long, G.M. Boyle, M. Hölzel, R.A. Scolyer, M.J. Smyth, Targeting adenosine in BRAF-mutant melanoma reduces tumor growth and metastasis. Cancer Res 77, 4684–4696 (2017)

    CAS  PubMed  Google Scholar 

  244. R. Romee, J.W. Leong, T.A. Fehniger, Utilizing cytokines to function-enable human NK cells for the immunotherapy of cancer. Scientifica 2014, 205796 (2014)

    PubMed  PubMed Central  Google Scholar 

  245. N.D. Huntington, H. Puthalakath, P. Gunn, E. Naik, E.M. Michalak, M.J. Smyth, H. Tabarias, M.A. Degli-Esposti, G. Dewson, S.N. Willis, N. Motoyama, D.C.S. Huang, S.L. Nutt, D.M. Tarlinton, A. Strasser, Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 8, 856–863 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  246. E. Mortier, T. Woo, R. Advincula, S. Gozalo, A. Ma, IL-15Ralpha chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J Exp Med 205, 1213–1225 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  247. R. Evans, J.A. Fuller, G. Christianson, D.M. Krupke, A.B. Troutt, IL-15 mediates anti-tumor effects after cyclophosphamide injection of tumor-bearing mice and enhances adoptive immunotherapy: The potential role of NK cell subpopulations. Cell Immunol 179, 66–73 (1997)

    CAS  PubMed  Google Scholar 

  248. A.H. Pillet, J. Thèze, T. Rose, Interleukin (IL)-2 and IL-15 have different effects on human natural killer lymphocytes. Hum Immunol 72, 1013–1017 (2011)

    CAS  PubMed  Google Scholar 

  249. R.J. Hennessy, K. Pham, R. Delconte, J. Rautela, P.D. Hodgkin, N.D. Huntington, Quantifying NK cell growth and survival changes in response to cytokines and regulatory checkpoint blockade helps identify optimal culture and expansion conditions. J Leukoc Biol 105, 1341–1354 (2019)

    CAS  PubMed  Google Scholar 

  250. M. Strengell, S. Matikainen, J. Sirén, A. Lehtonen, D. Foster, I. Julkunen, T. Sareneva, IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol 170, 5464–5469 (2003)

    CAS  PubMed  Google Scholar 

  251. E. Lusty, S.M. Poznanski, K. Kwofie, T.S. Mandur, D.A. Lee, C.D. Richards, A.A. Ashkar, IL-18/IL-15/IL-12 synergy induces elevated and prolonged IFN-γ production by ex vivo expanded NK cells which is not due to enhanced STAT4 activation. Mol Immunol 88, 138–147 (2017)

    CAS  PubMed  Google Scholar 

  252. C.S. Henney, K. Kuribayashi, D.E. Kern, S. Gillis, Interleukin-2 augments natural killer cell activity. Nature 291, 335–338 (1981)

  253. R. Spolski, P. Li, W.J. Leonard, Biology and regulation of IL-2: From molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648–659 (2018)

    CAS  PubMed  Google Scholar 

  254. S.A. Rosenberg, IL-2: The first effective immunotherapy for human cancer. J Immunol 192, 5451–5458 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  255. T. Jiang, C. Zhou, S. Ren, Role of IL-2 in cancer immunotherapy. Oncoimmunol 5, e1163462 (2016)

  256. H. Choudhry, N. Helmi, W.H. Abdulaal, M. Zeyadi, M.A. Zamzami, W. Wu, M.M. Mahmoud, M.K. Warsi, M. Rasool, M.S. Jamal, Prospects of IL-2 in Cancer immunotherapy. Biomed Res Int 2018, 9056173 (2018)

    PubMed  PubMed Central  Google Scholar 

  257. T. Chinen, A.K. Kannan, A.G. Levine, X. Fan, U. Klein, Y. Zheng, G. Gasteiger, Y. Feng, J.D. Fontenot, A.Y. Rudensky, An essential role for the IL-2 receptor in Treg cell function. Nat Immunol 17, 1322–1333 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  258. D.H. Charych, U. Hoch, J.L. Langowski, S.R. Lee, M.K. Addepalli, P.B. Kirk, D. Sheng, X. Liu, P.W. Sims, L.A. VanderVeen, C.F. Ali, T.K. Chang, M. Konakova, R.L. Pena, R.S. Kanhere, Y.M. Kirksey, C. Ji, Y. Wang, J. Huang, T.D. Sweeney, S.S. Kantak, S.K. Doberstein, NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res 22, 680–690 (2016)

    CAS  PubMed  Google Scholar 

  259. V. Bachanova, J.S. Miller, NK cells in therapy of cancer. Crit Rev Oncog 19, 133–141 (2014)

  260. Z.B. Davis, M. Felices, M.R. Verneris, J.S. Miller, Natural killer cell adoptive transfer therapy: Exploiting the first line of defense against cancer. Cancer J 21, 486–491 (2015)

  261. S. Matosevic, Viral and nonviral engineering of natural killer cells as emerging adoptive Cancer immunotherapies. J Immunol Res 2018, 4054815 (2018)

    PubMed  PubMed Central  Google Scholar 

  262. Z. Wang, L. Guo, Y. Song, Y. Zhang, D. Lin, B. Hu, Y. Mei, D. Sandikin, H. Liu, Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D. Cancer Immunol Immunother 66, 537–548 (2017)

    CAS  PubMed  Google Scholar 

  263. W. Hu, G. Wang, D. Huang, M. Sui, Y. Xu, Cancer immunotherapy based on natural killer cells: Current Progress and new opportunities. Front Immunol 10, 1205 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Y. Li, D.L. Hermanson, B.S. Moriarity, D.S. Kaufman, Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  265. M. Naeimi Kararoudi, H. Dolatshad, P. Trikha, S.R.A. Hussain, E. Elmas, J.A. Foltz, J.E. Moseman, A. Thakkar, R.J. Nakkula, M. Lamb, N. Chakravarti, K.J. McLaughlin, D.A. Lee, Generation of Knock-out primary and expanded human NK cells using Cas9 ribonucleoproteins. J Vis Exp 136, e58237 (2018)

    Google Scholar 

  266. Q.M. Wang, P.M.K. Tang, G.Y. Lian, C. Li, J. Li, X.R. Huang, K. F. To, H.Y. Lan, Enhanced Cancer immunotherapy with Smad3-silenced NK-92 cells. Cancer Immunol Res 6, 965–977 (2018)

  267. E. S. Yvon, R. Burga, A. Powell, C. R. Cruz, R. Fernandes, C. Barese, T. Nguyen, M. S. Abdel-Baki, C. M. Bollard, Cord blood natural killer cells expressing a dominant negative TGF-β receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy 19, 408–418 (n.d.)(107)

  268. R. Esser, T. Müller, D. Stefes, S. Kloess, D. Seidel, S.D. Gillies, C. Aperlo-Iffland, J.S. Huston, C. Uherek, K. Schönfeld, T. Tonn, N. Huebener, H.N. Lode, U. Koehl, W.S. Wels, NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 16, 569–581 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  269. C. Sahm, K. Schönfeld, W.S. Wels, Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol Immunother 61, 1451–1461 (2012)

    CAS  PubMed  Google Scholar 

  270. Y.H. Chang, J. Connolly, N. Shimasaki, K. Mimura, K. Kono, D. Campana, A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 73, 1777–1786 (2013)

    CAS  PubMed  Google Scholar 

  271. R. Parihar, C. Rivas, M. Huynh, B. Omer, N. Lapteva, L.S. Metelitsa, S.M. Gottschalk, C.M. Rooney, NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol Res 7, 363–375 (2019)

  272. K. Schönfeld, C. Sahm, C. Zhang, S. Naundorf, C. Brendel, M. Odendahl, P. Nowakowska, H. Bönig, U. Köhl, S. Kloess, S. Köhler, H. Holtgreve-Grez, A. Jauch, M. Schmidt, R. Schubert, K. Kühlcke, E. Seifried, H.G. Klingemann, M.A. Rieger, T. Tonn, M. Grez, W.S. Wels, Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther 23, 330–338 (2015)

    PubMed  Google Scholar 

  273. Q. Zhang, K. Tian, J. Xu, H. Zhang, L. Li, Q. Fu, D. Chai, H. Li, J. Zheng, Synergistic effects of Cabozantinib and EGFR-specific CAR-NK-92 cells in renal cell carcinoma. J Immunol Res 2017, 6915912 (2017)

    PubMed  PubMed Central  Google Scholar 

  274. M. Yu, H. Luo, M. Fan, X. Wu, B. Shi, S. Di, Y. Liu, Z. Pan, H. Jiang, Z. Li, Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol Ther 26, 366–378 (2018)

    CAS  PubMed  Google Scholar 

  275. H. Park, A. Awasthi, J. Ayello, Y. Chu, S. Riddell, J. Rosenblum, D.A. Lee, M.S. Cairo, ROR1-specific chimeric antigen receptor (CAR) NK cell immunotherapy for high risk neuroblastomas and sarcomas. Biol Blood Marrow Transplant 23, S136–S137 (2017)

    Google Scholar 

Download references

Funding

This work was supported, in part, by a Ralph W. and Grace M. Showalter Research Trust award and a Walther Cancer Foundation Embedding Grant.

Author information

Authors and Affiliations

Authors

Contributions

J.W. did primary research and wrote the initial draft of the manuscript. S.M. oversaw preparation of the manuscript and edited the final draft.

Corresponding author

Correspondence to Sandro Matosevic.

Ethics declarations

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Matosevic, S. Functional and metabolic targeting of natural killer cells to solid tumors. Cell Oncol. 43, 577–600 (2020). https://doi.org/10.1007/s13402-020-00523-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00523-7

Keywords

Navigation