Skip to main content

Advertisement

Log in

The ERBB receptor inhibitor dacomitinib suppresses proliferation and invasion of pancreatic ductal adenocarcinoma cells

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is the fourth most common cause of cancer-related death in the USA. Local progression, early tumor dissemination and low efficacy of current treatments are the major reasons for its high mortality rate. The ERBB family is over-expressed in PDAC and plays essential roles in its tumorigenesis; however, single-targeted ERBB inhibitors have shown limited activity in this disease. Here, we examined the anti-tumor activity of dacomitinib, a pan-ERBB receptor inhibitor, on PDAC cells.

Methods

Anti-proliferative effects of dacomitinib were determined using a cell proliferation assay and crystal violet staining. Annexin V/PI staining, radiation therapy and cell migration and invasion assays were carried out to examine the effects of dacomitinib on apoptosis, radio-sensitivity and cell motility, respectively. Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analyses were applied to elucidate the molecular mechanisms underlying the anti-tumor activity of dacomitinib.

Results

We found that dacomitinib diminished PDAC cell proliferation via inhibition of FOXM1 and its targets Aurora kinase B and cyclin B1. Moreover, we found that dacomitinib induced apoptosis and potentiated radio-sensitivity via inhibition of the anti-apoptotic proteins survivin and MCL1. Treatment with dacomitinib attenuated cell migration and invasion through inhibition of the epithelial-to-mesenchymal transition (EMT) markers ZEB1, Snail and N-cadherin. In contrast, we found that the anti-tumor activity of single-targeted ERBB agents including cetuximab (anti-EGFR mAb), trastuzumab (anti-HER2 mAb), H3.105.5 (anti-HER3 mAb) and erlotinib (EGFR small molecule inhibitor) were marginal.

Conclusions

Our findings indicate that dacomitinib-mediated blockade of the ERBB receptors yields advantages over single-targeted ERBB inhibition and provide a rationale for further investigation of the therapeutic potential of dacomitinib in the treatment of ERBB-driven PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018)

    Article  PubMed  Google Scholar 

  2. L. Rahib, B.D. Smith, R. Aizenberg, A.B. Rosenzweig, J.M. Fleshman, L.M. Matrisian, Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. I. Garrido-Laguna, M. Hidalgo, Pancreatic cancer: From state-of-the-art treatments to promising novel therapies. Nat. Rev. Clin. Oncol. 12, 319–334 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. J. Zhang, L. Zhang, C. Li, C. Yang, L. Li, S. Song, H. Wu, F. Liu, L. Wang, J. Gu, LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients. Cell. Oncol. 41, 73–84 (2018)

    Article  CAS  Google Scholar 

  5. M. Giulietti, G. Occhipinti, G. Principato, F. Piva, Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cell. Oncol. 40, 181–192 (2017)

    Article  CAS  Google Scholar 

  6. H. Brückner, Surgical treatment of medial surgical neck fractures. Zeitschrift fur arztliche Fortbildung 59, 790 (1965)

    PubMed  Google Scholar 

  7. D. Li and E.M. O’Reilly, in Seminars in oncology, (Elsevier, 2015), p. 134–143

  8. D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. M.J. Moore, D. Goldstein, J. Hamm, A. Figer, J.R. Hecht, S. Gallinger, H.J. Au, P. Murawa, D. Walde, R.A. Wolff, Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada clinical trials group. J. Clin. Oncol. 25, 1960–1966 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. H.Q. Xiong, A. Rosenberg, A. LoBuglio, W. Schmidt, R.A. Wolff, J. Deutsch, M. Needle, J.L. Abbruzzese, Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: A multicenter phase II trial. J. Clin. Oncol. 22, 2610–2616 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. J. Harder, G. Ihorst, V. Heinemann, R. Hofheinz, M. Moehler, P. Buechler, G. Kloeppel, C. Röcken, M. Bitzer, S. Boeck, Multicentre phase II trial of trastuzumab and capecitabine in patients with HER2 overexpressing metastatic pancreatic cancer. Br. J. Cancer 106, 1033–1038 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J.S. de Bono, E.K. Rowinsky, The ErbB receptor family: A therapeutic target for cancer. Trends Mol. Med. 8, S19–S26 (2002)

    Article  PubMed  Google Scholar 

  13. W.J. Gullick, The epidermal growth factor system of ligands and receptors in cancer. Eur. J. Cancer 45, 205–210 (2009)

    Article  PubMed  Google Scholar 

  14. A. Citri, Y. Yarden, EGF–ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. C.L. Arteaga, J.A. Engelman, ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25, 282–303 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y. Yarden, M.X. Sliwkowski, Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. R.K. Schmidt-Ullrich, J.N. Contessa, G. Lammering, G. Amorino, P.-S. Lin, ERBB receptor tyrosine kinases and cellular radiation responses. Oncogene 22, 5855–5865 (2003)

  18. N. Ioannou, A.M. Seddon, A. Dalgleish, D. Mackintosh, H. Modjtahedi, Expression pattern and targeting of HER family members and IGF-IR in pancreatic cancer. Front. Biosci. (Landmark Ed) 17, 2698–2724 (2012)

  19. S. Ueda, S. Ogata, H. Tsuda, N. Kawarabayashi, M. Kimura, Y. Sugiura, S. Tamai, O. Matsubara, K. Hatsuse, H. Mochizuki, The correlation between cytoplasmic overexpression of epidermal growth factor receptor and tumor aggressiveness: Poor prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas 29, e1–e8 (2004)

  20. K. Tobita, H. Kijima, S. Dowaki, H. Kashiwagi, Y. Ohtani, Y. Oida, H. Yamazaki, M. Nakamura, Y. Ueyama, M. Tanaka, Epidermal growth factor receptor expression in human pancreatic cancer: Significance for liver metastasis. Int. J. Mol. Med. 11, 305–309 (2003)

    CAS  PubMed  Google Scholar 

  21. A. Pryczynicz, K. Guzińska-Ustymowicz, A. Kemona, J. Czyżewska, Expression of EGF and EGFR strongly correlates with metastasis of pancreatic ductal carcinoma. Anticancer Res. 28, 1399–1404 (2008)

    PubMed  Google Scholar 

  22. H. Safran, M. Steinhoff, S. Mangray, R. Rathore, T.C. King, L. Chai, K. Berzein, T. Moore, D. Iannitti, P. Reiss, Overexpression of the HER-2/neu oncogene in pancreatic adenocarcinoma. Am. J. Clin. Oncol. 24, 496–499 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. A.J. Saxby, A. Nielsen, C.J. Scarlett, A. Clarkson, A. Morey, A. Gill, R.C. Smith, Assessment of HER-2 status in pancreatic adenocarcinoma: Correlation of immunohistochemistry, quantitative real-time RT-PCR, and FISH with aneuploidy and survival. Am. J. Surg. Pathol. 29, 1125–1134 (2005)

    Article  PubMed  Google Scholar 

  24. T. Hirakawa, B. Nakata, R. Amano, K. Kimura, S. Shimizu, G. Ohira, N. Yamada, M. Ohira, K. Hirakawa, HER3 overexpression as an independent indicator of poor prognosis for patients with curatively resected pancreatic cancer. Oncology 81, 192–198 (2011)

  25. H.U. Graber, H. Friess, B. Kaufmann, D. Willi, A. Zimmermann, M. Korc, M.W. Büchler, ErbB-4 mRNA expression is decreased in non-metastatic pancreatic cancer. Int. J. Cancer 84, 24–27 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. A.J. Gonzales, K.E. Hook, I.W. Althaus, P.A. Ellis, E. Trachet, A.M. Delaney, P.J. Harvey, T.A. Ellis, D.M. Amato, J.M. Nelson, Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol. Cancer Ther. 7, 1880–1889 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Y.-L. Wu, Y. Cheng, X. Zhou, K.H. Lee, K. Nakagawa, S. Niho, F. Tsuji, R. Linke, R. Rosell, J. Corral, Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol. 18, 1454–1466 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. T.S. Mok, Y. Cheng, X. Zhou, K.H. Lee, K. Nakagawa, S. Niho, M. Lee, R. Linke, R. Rosell, J. Corral, Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non–small-cell lung cancer and EGFR-activating mutations. J. Clin. Oncol. 36, 2244–2250 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. J.A. Engelman, K. Zejnullahu, C.-M. Gale, E. Lifshits, A.J. Gonzales, T. Shimamura, F. Zhao, P.W. Vincent, G.N. Naumov, J.E. Bradner, PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 67, 11924–11932 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. H.-J. Nam, K.A. Ching, J. Kan, H.-P. Kim, S.-W. Han, S.-A. Im, T.-Y. Kim, J.G. Christensen, D.-Y. Oh, Y.-J. Bang, Evaluation of the antitumor effects and mechanisms of PF00299804, a pan-HER inhibitor, alone or in combination with chemotherapy or targeted agents in gastric cancer. Mol. Cancer Ther. 11, 439–451 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. X. Wang, D. Goldstein, P.J. Crowe, J.-L. Yang, Antitumour effects and mechanisms of action of the panHER inhibitor, dacomitinib, alone and in combination with the STAT3 inhibitor, S3I-201, in human sarcoma cell lines. Int. J. Oncol. 52, 2143–2154 (2018)

    CAS  PubMed  Google Scholar 

  32. F. Ather, H. Hamidi, M.S. Fejzo, S. Letrent, R.S. Finn, F. Kabbinavar, C. Head, S.G. Wong, Dacomitinib, an irreversible Pan-ErbB inhibitor significantly abrogates growth in head and neck cancer models that exhibit low response to cetuximab. PLoS One 8, e56112 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Momeny, G. Zarrinrad, F. Moghaddaskho, A. Poursheikhani, G. Sankanian, A. Zaghal, S. Mirshahvaladi, F. Esmaeili, H. Eyvani, F. Barghi, Dacomitinib, a pan-inhibitor of ErbB receptors, suppresses growth and invasive capacity of chemoresistant ovarian carcinoma cells. Sci. Rep. 7, 4204 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T.-C. Chou, Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. M. Momeny, J.M. Saunus, F. Marturana, A.E.M. Reed, D. Black, G. Sala, S. Iacobelli, J.D. Holland, D. Yu, L. Da Silva, Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget 6, 3932 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Y. Binenbaum, S. Na’ara, Z. Gil, Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist. Updat. 23, 55–68 (2015)

    Article  PubMed  Google Scholar 

  37. X. Wang, K.M. Batty, P.J. Crowe, D. Goldstein, J.-L. Yang, The potential of panHER inhibition in cancer. Front. Oncol. 5, 2 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  38. S. Lu, F. Concha-Benavente, G. Shayan, R.M. Srivastava, S.P. Gibson, L. Wang, W.E. Gooding, R.L. Ferris, STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV+ status in head and neck cancer. Oral Oncol. 78, 186–193 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. F. Vanderhoeven, A.L. Redondo, A.L. Martinez, L.M. Vargas-Roig, A.M. Sanchez, M.I. Flamini, Synergistic antitumor activity by combining trastuzumab with retinoic acid in HER2 positive human breast cancer cells. Oncotarget 9, 26527 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  40. J. Laoukili, M.R. Kooistra, A. Brás, J. Kauw, R.M. Kerkhoven, A. Morrison, H. Clevers, R.H. Medema, FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat. Cell Biol. 7, 126–136 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. J. Li, R. Wang, P.G. Schweickert, A. Karki, Y. Yang, Y. Kong, N. Ahmad, S.F. Konieczny, X. Liu, Plk1 inhibition enhances the efficacy of gemcitabine in human pancreatic cancer. Cell Cycle 15, 711–719 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. van Engeland, F.C. Ramaekers, B. Schutte, C.P. Reutelingsperger, A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24, 131–139 (1996)

    Article  PubMed  Google Scholar 

  43. J. Berthelet, L. Dubrez, Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells 2, 163–187 (2013)

  44. J.K. Brunelle, A. Letai, Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci. 122, 437–441 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. J.P. Thiery, Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002)

    Article  CAS  PubMed  Google Scholar 

  46. A.D. Rhim, E.T. Mirek, N.M. Aiello, A. Maitra, J.M. Bailey, F. McAllister, M. Reichert, G.L. Beatty, A.K. Rustgi, R.H. Vonderheide, EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. N.M. Aiello, T. Brabletz, Y. Kang, M.A. Nieto, R.A. Weinberg, B.Z. Stanger, Upholding a role for EMT in pancreatic cancer metastasis. Nature 547, E7 (2017)

  48. P. Zhou, B. Li, F. Liu, M. Zhang, Q. Wang, Y. Liu, Y. Yao, D. Li, The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer. Mol. Cancer 16, 52 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Appert-Collin, P. Hubert, G. Crémel, A. Bennasroune, Role of ErbB receptors in cancer cell migration and invasion. Front. Pharmacol. 6, 283 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K.S. Spencer, D. Graus-Porta, J. Leng, N.E. Hynes, R.L. Klemke, ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases. J. Cell Biol. 148, 385–397 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M.E. Feigin, S.K. Muthuswamy, ErbB receptors and cell polarity: New pathways and paradigms for understanding cell migration and invasion. Exp. Cell Res. 315, 707–716 (2009)

    Article  CAS  PubMed  Google Scholar 

  52. N. Silvestris, V. Longo, F. Cellini, M. Reni, A. Bittoni, I. Cataldo, S. Partelli, M. Falconi, A. Scarpa, O. Brunetti, Neoadjuvant multimodal treatment of pancreatic ductal adenocarcinoma. Crit. Rev. Oncol. Hematol. 98, 309–324 (2016)

    Article  PubMed  Google Scholar 

  53. E. Fokas, C. Eccles, N. Patel, K.-Y. Chu, S. Warren, W.G. McKenna, T. Brunner, Comparison of four target volume definitions for pancreatic cancer. Strahlenther. Onkol. 189, 407–416 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. P.J. Loehrer Sr., Y. Feng, H. Cardenes, L. Wagner, J.M. Brell, D. Cella, P. Flynn, R.K. Ramanathan, C.H. Crane, S.R. Alberts, Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: An eastern cooperative oncology group trial. J. Clin. Oncol. 29, 4105–4112 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. G. Tortora, T. Gelardi, F. Ciardiello, R. Bianco, The rationale for the combination of selective EGFR inhibitors with cytotoxic drugs and radiotherapy. Int. J. Biol. Markers 22, 47–52 (2007)

    Article  CAS  PubMed  Google Scholar 

  56. J. Maurel, M. Martin-Richard, C. Conill, M. Sánchez, L. Petriz, A. Ginès, R. Miquel, R. Gallego, R. Cajal, C. Ayuso, Phase I trial of gefitinib with concurrent radiotherapy and fixed 2-h gemcitabine infusion, in locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 66, 1391–1398 (2006)

    Article  CAS  PubMed  Google Scholar 

  57. L. Zhang, S. Yuan, Expression of c-erbB-2 oncogene protein, epidermal growth factor receptor, and TGF-beta1 in human pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat. Dis. Int. 1, 620–623 (2002)

  58. M.E. Valsecchi, M. McDonald, J.R. Brody, T. Hyslop, B. Freydin, C.J. Yeo, C. Solomides, S.C. Peiper, A.K. Witkiewicz, Epidermal growth factor receptor and insulinlike growth factor 1 receptor expression predict poor survival in pancreatic ductal adenocarcinoma. Cancer 118, 3484–3493 (2012)

  59. A. Pryczynicz, K. Guzińska-Ustymowicz, J. Czyzewska, A. Kemona, Expression of epidermal growth factors and apoptosis markers in pancreatic ductal adenocarcinoma. Folia Histochem. Cytobiol. 47, 667–671 (2009)

    PubMed  Google Scholar 

  60. Y. Yamanaka, H. Friess, M. Kobrin, M. Buchler, H. Beger, M. Korc, Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res. 13, 565–569 (1993)

    CAS  PubMed  Google Scholar 

  61. M. Dong, Y. Nio, K. Guo, K. Tamura, Y. Tian, Y. Dong, Epidermal growth factor and its receptor as prognostic indicators in Chinese patients with pancreatic cancer. Anticancer Res. 18, 4613–4619 (1998)

    CAS  PubMed  Google Scholar 

  62. Z. Zhu, J. Kleeff, H. Friess, L. Wang, A. Zimmermann, Y. Yarden, M.W. Büchler, M. Korc, Epiregulin is up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem. Biophys. Res. Commun. 273, 1019–1024 (2000)

    Article  CAS  PubMed  Google Scholar 

  63. L. Faloppi, K. Andrikou, S. Cascinu, Cetuximab: Still an option in the treatment of pancreatic cancer? Expert. Opin. Biol. Ther. 13, 791–801 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. K. Kimura, T. Sawada, M. Komatsu, M. Inoue, K. Muguruma, T. Nishihara, Y. Yamashita, N. Yamada, M. Ohira, K. Hirakawa, Antitumor effect of trastuzumab for pancreatic cancer with high HER-2 expression and enhancement of effect by combined therapy with gemcitabine. Clin. Cancer Res. 12, 4925–4932 (2006)

    Article  CAS  PubMed  Google Scholar 

  65. Z. Huang, C. Brdlik, P. Jin, H.M. Shepard, A pan-HER approach for cancer therapy: Background, current status and future development. Expert. Opin. Biol. Ther. 9, 97–110 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. H.J. Jacobsen, T.T. Poulsen, A. Dahlman, I. Kjær, K. Koefoed, J.W. Sen, D. Weilguny, B. Bjerregaard, C.R. Andersen, I.D. Horak, Pan-HER, an antibody mixture simultaneously targeting EGFR, HER2, and HER3, effectively overcomes tumor heterogeneity and plasticity. Clin. Cancer Res. 21, 4110–4122 (2015)

    Article  CAS  PubMed  Google Scholar 

  67. N. Tebbutt, M.W. Pedersen, T.G. Johns, Targeting the ERBB family in cancer: Couples therapy. Nat. Rev. Cancer 13, 663–673 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. M. Martin, F.A. Holmes, B. Ejlertsen, S. Delaloge, B. Moy, H. Iwata, G. von Minckwitz, S.K. Chia, J. Mansi, C.H. Barrios, Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-years analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1688–1700 (2017)

    Article  CAS  PubMed  Google Scholar 

  69. K.L. Reckamp, G. Giaccone, D.R. Camidge, S.M. Gadgeel, F.R. Khuri, J.A. Engelman, M. Koczywas, A. Rajan, A.K. Campbell, D. Gernhardt, A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non–small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer 120, 1145–1154 (2014)

    Article  CAS  PubMed  Google Scholar 

  70. M. Hidalgo, Pancreatic cancer. N. Engl. J. Med. 362, 1605–1617 (2010)

    Article  CAS  PubMed  Google Scholar 

  71. G. Disibio, S.W. French, Metastatic patterns of cancers: Results from a large autopsy study. Arch. Pathol. Lab. Med. 132, 931–939 (2008)

    PubMed  Google Scholar 

  72. A. Aghdassi, M. Sendler, A. Guenther, J. Mayerle, C.-O. Behn, C.-D. Heidecke, H. Friess, M. Büchler, M. Evert, M.M. Lerch, Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61, 439–448 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. B. Hotz, M. Arndt, S. Dullat, S. Bhargava, H.-J. Buhr, H.G. Hotz, Epithelial to mesenchymal transition: Expression of the regulators snail, slug, and twist in pancreatic cancer. Clin. Cancer Res. 13, 4769–4776 (2007)

    Article  CAS  PubMed  Google Scholar 

  74. Z.-G. Chang, J.-M. Wei, C.-F. Qin, K. Hao, X.-D. Tian, K. Xie, X.-H. Xie, Y.-M. Yang, Suppression of the epidermal growth factor receptor inhibits epithelial–mesenchymal transition in human pancreatic cancer PANC-1 cells. Dig. Dis. Sci. 57, 1181–1189 (2012)

    Article  CAS  PubMed  Google Scholar 

  75. M.G. Binker, M.J. Binker-Cosen, A.A. Binker-Cosen, L.I. Cosen-Binker, Microenvironmental factors and extracellular matrix degradation in pancreatic cancer. JOP 15, 280–285 (2014)

    PubMed  Google Scholar 

  76. M. Buck, D.G. Karustis, N. Day, K. Honn, B.F. Sloane, Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem. J. 282, 273–278 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. J.S. Rao, Molecular mechanisms of glioma invasiveness: The role of proteases. Nat. Rev. Cancer 3, 489–501 (2003)

    Article  CAS  PubMed  Google Scholar 

  78. M. Momeny, M. Malehmir, M. Zakidizaji, R. Ghasemi, H. Ghadimi, M.A. Shokrgozar, A.H. Emami, S. Nafissi, A. Ghavamzadeh, S.H. Ghaffari, Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa B-mediated induction of matrix metalloproteinase 9. Anti-Cancer Drugs 21, 252–260 (2010)

    Article  CAS  PubMed  Google Scholar 

  79. D. Brix, K. Clemmensen, T. Kallunki, When good turns bad: Regulation of invasion and metastasis by ErbB2 receptor tyrosine kinase. Cells 3, 53–78 (2014)

  80. A. Arlt, S.S. Müerköster, H. Schäfer, Targeting apoptosis pathways in pancreatic cancer. Cancer Lett. 332, 346–358 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. S. Fulda, Apoptosis pathways and their therapeutic exploitation in pancreatic cancer. J. Cell. Mol. Med. 13, 1221–1227 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  82. R. Hamacher, R.M. Schmid, D. Saur, G. Schneider, Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol. Cancer 7, 64 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. H.-T. Guan, X.-H. Xue, Z.-J. Dai, X.-J. Wang, A. Li, Z.-Y. Qin, Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity. World J. Gastroenterol. 12, 2901–2907 (2006)

  84. S.-H. Wei, K. Dong, F. Lin, X. Wang, B. Li, J.-j. Shen, Q. Zhang, R. Wang, H.-Z. Zhang, Inducing apoptosis and enhancing chemosensitivity to gemcitabine via RNA interference targeting mcl-1 gene in pancreatic carcinoma cell. Cancer Chemother. Pharmacol. 62, 1055–1064 (2008)

    Article  CAS  PubMed  Google Scholar 

  85. R.B. Lopes, R. Gangeswaran, I.A. McNeish, Y. Wang, N.R. Lemoine, Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int. J. Cancer 120, 2344–2352 (2007)

    Article  CAS  PubMed  Google Scholar 

  86. N. Ioannou, A. Dalgleish, A. Seddon, D. Mackintosh, U. Guertler, F. Solca, H. Modjtahedi, Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells. Br. J. Cancer 105, 1554–1562 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. P. Seshacharyulu, M.P. Ponnusamy, S. Rachagani, I. Lakshmanan, D. Haridas, Y. Yan, A.K. Ganti, S.K. Batra, Targeting EGF-receptor (s)-STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget 6, 5164 (2015)

    Article  PubMed  Google Scholar 

  88. F. Huguet, M. Fernet, N. Giocanti, V. Favaudon, A.K. Larsen, Afatinib, an irreversible EGFR family inhibitor, shows activity toward pancreatic cancer cells, alone and in combination with radiotherapy, independent of KRAS status. Target. Oncol. 11, 371–381 (2016)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a grant from the Hematology/Oncology and Stem Cell Transplantation Research Centre, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Technical assistance of Ms. Azam Zaghal is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.M. designed the study; F.E., H.Y., S.J., Z.A., S.H.M., D.B. and F.K. conducted the research; A.R.D., S.M.T., J.T., P.H., K.A. and A.G. analyzed the data; M.M., S.H. and V.V. wrote the paper; M.M. and S.H.G. were primarily responsible for the final content. All authors have reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Majid Momeny or Seyed H. Ghaffari.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeny, M., Esmaeili, F., Hamzehlou, S. et al. The ERBB receptor inhibitor dacomitinib suppresses proliferation and invasion of pancreatic ductal adenocarcinoma cells. Cell Oncol. 42, 491–504 (2019). https://doi.org/10.1007/s13402-019-00448-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00448-w

Keywords

Navigation