Skip to main content
Log in

Recent Advances for Fabricating Smart Electromagnetic Interference Shielding Textile: A Comprehensive Review

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A sharp elevation in the generation of electromagnetic interference (EMI) is observed, directly proportional to the increase in digital and electronic appliances. With the high growing population and enhancement in the number of electrical devices used in personal, industrial and medical sites, the issues arising due to EMI are also at their peak. EM wave interference is known to cause malfunctioning of the nearby electronic devices, destroying the signals and affecting human health, causing nausea, headaches, neural deformities etc. To avoid the harmful effect of these interferences, the personnel in its vicinity need a shielding material, protecting them from the ill effects of the electromagnetic waves. In this review article, EMI shielding textiles are being focused upon. Cotton, spandex, PET, PAN, silk fabric, etc., are modified through various methods and techniques like drop-casting, layer-by-layer electrostatic self-assembly, click chemistry, and inkjet printing to perform the function of shielding of EM waves. These smart, flexible, hydrophobic and light weighing fabrics can be revolutionary in diminishing the deteriorating effects of EM waves in the human body. Surface modified having high electrical conductivities and EMI SE of up to and beyond 90 dB in various frequency ranges have been reported, providing promising and alternative personal protective equipment for electromagnetic interference shielding.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright year 2019, American Chemical Society}

Fig. 4
Fig. 5
Fig. 6

Copyright year 2020, American Chemical Society}

Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are openly available on the internet, as in reference stated below. The authors confirm that the data and materials supporting the findings of this study are available within the article cited.

Abbreviations

EMI:

Electromagnetic interference

SE:

Shielding effectiveness

FESEM:

Field emission scanning electron microscopy

AFM:

Atomic forced microscopy

XPS:

X-ray photoelectron spectroscopy

CNT:

Carbon nanotube

MWCNT:

Multi-walled carbon nanotube

EDS:

Energy-dispersive X-ray spectroscopy

TEM:

Transmission electron microscopy

NW:

Nano wire

PPy:

Poly pyrrole

PTFE:

Polytetrafluoroethylene

PANI:

Polyaniline

References

  1. Raagulan, K., Kim, B.M., Chai, K.Y.: Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials. 10, 702 (2020)

    Article  CAS  Google Scholar 

  2. Jia, L.C., Li, Y.K., Yan, D.X.: Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon N Y 121, 267–273 (2017). https://doi.org/10.1016/J.CARBON.2017.05.100

    Article  CAS  Google Scholar 

  3. Geetha, S., Kumar, K.K.S., Rao, C.R.K., Vijayan, M., Trivedi, D.C.: EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112, 2073–2086 (2009). https://doi.org/10.1002/APP.29812

    Article  CAS  Google Scholar 

  4. Chung, D.D.L.: Materials for electromagnetic interference shielding. Mater. Chem. Phys. 255, 123587 (2020). https://doi.org/10.1016/J.MATCHEMPHYS.2020.123587

    Article  CAS  Google Scholar 

  5. Safdar, F., Ashraf, M., Javid, A., Iqbal, K.: Polymeric textile-based electromagnetic interference shielding materials, their synthesis, mechanism and applications–a review. J. Indust. Text. (2021). https://doi.org/10.1177/15280837211037085

    Article  Google Scholar 

  6. Balmori, A.: Electromagnetic pollution from phone masts effects on wildlife. Pathophysiology 16, 191–199 (2009). https://doi.org/10.1016/J.PATHOPHYS.2009.01.007

    Article  Google Scholar 

  7. Redlarski, G., Lewczuk, B., Zak, A., Koncicki, A., Krawczuk, M., Piechocki, J., et al.: The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. BioMed Res. Int. (2015). https://doi.org/10.1155/2015/234098

    Article  Google Scholar 

  8. [Effects of radiation exposure on human body] - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/22514910/ (accessed January 31, 2022).

  9. Caplan, L.S., Schoenfeld, E.R., O’Leary, E.S., Leske, M.C.: Breast cancer and electromagnetic fields–a review. Ann. Epidemiol 10, 31–44 (2000). https://doi.org/10.1016/S1047-2797(99)00043-5

    Article  CAS  Google Scholar 

  10. Kovacic, P., Somanathan, R.: Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res 30, 214–226 (2010). https://doi.org/10.3109/10799893.2010.488650

    Article  CAS  Google Scholar 

  11. Wan, Y.J., Zhu, P.L., Yu, S.H., Sun, R., Wong, C.P., Liao, W.H.: Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon N Y 122, 74–81 (2017). https://doi.org/10.1016/J.CARBON.2017.06.042

    Article  CAS  Google Scholar 

  12. Baliatsas, C., van Kamp, I., Bolte, J., Schipper, M., Yzermans, J., Lebret, E.: Non-specific physical symptoms and electromagnetic field exposure in the general population: can we get more specific? A Syst. Rev. Environ Int 41, 15–28 (2012). https://doi.org/10.1016/J.ENVINT.2011.12.002

    Article  Google Scholar 

  13. Diab, K.A.: The impact of the low frequency of the electromagnetic field on human. Adv. Exp. Med. Biol. 1237, 135–149 (2020). https://doi.org/10.1007/5584_2019_420

    Article  CAS  Google Scholar 

  14. Genuis, S.J., Lipp, C.T.: Electromagnetic hypersensitivity: fact or fiction? Sci Total Environ 414, 103–112 (2012). https://doi.org/10.1016/J.SCITOTENV.2011.11.008

    Article  CAS  Google Scholar 

  15. Singh, S., Kapoor, N.: Health implications of electromagnetic fields, mechanisms of action, and research needs. Adv. Biol. 2014, 1–24 (2014). https://doi.org/10.1155/2014/198609

    Article  CAS  Google Scholar 

  16. Rostami, Z., Jafari, S.: Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn. Neurodyn. 12, 235 (2018). https://doi.org/10.1007/S11571-017-9472-Y

    Article  Google Scholar 

  17. Redmayne, M., Smith, E., Abramson, M.J.: The relationship between adolescents’ well-being and their wireless phone use: a cross-sectional study. Environ Health (2013). https://doi.org/10.1186/1476-069X-12-90

    Article  Google Scholar 

  18. Cifra, M., Fields, J.Z., Farhadi, A.: Electromagnetic cellular interactions. Prog. Biophys. Mol. Biol. 105, 223–246 (2011). https://doi.org/10.1016/J.PBIOMOLBIO.2010.07.003

    Article  CAS  Google Scholar 

  19. Jagatheesan, K., Ramasamy, A., Das, A., Basu, A.: Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics – a review. Indian J. Fibre and Textile Res. (IJFTR) 39, 329–342 (2014)

    CAS  Google Scholar 

  20. Hocking, B.: Preliminary report: symptoms associated with mobile phone use. Occup. Med. 48, 357–360 (1998). https://doi.org/10.1093/OCCMED/48.6.357

    Article  CAS  Google Scholar 

  21. Chia, S.E., Chia, H.P., Tan, J.S.: Prevalence of headache among handheld cellular telephone users in Singapore: a community study. Environ. Health Perspect. 108, 1059 (2000). https://doi.org/10.1289/EHP.001081059

    Article  CAS  Google Scholar 

  22. Wanasinghe, D., Aslani, F.: A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. B Eng. 176, 107207 (2019). https://doi.org/10.1016/J.COMPOSITESB.2019.107207

    Article  CAS  Google Scholar 

  23. V KP.: Electromagnetic Shielding Textiles: Theory, Principles, Productions (2021).

  24. Maity, S., Singha, K., Debnath, P., Singha, M.: Textiles in electromagnetic radiation protection. J. Saf. Eng. 2, 11–19 (2013). https://doi.org/10.5923/J.SAFETY.20130202.01

    Article  Google Scholar 

  25. Shen, B., Li, Y., Yi, D., Zhai, W., Wei, X., Zheng, W.: Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon N Y (2017). https://doi.org/10.1016/J.CARBON.2016.11.034

    Article  Google Scholar 

  26. Kruželák, J., Kvasničáková, A., Hložeková, K., Hudec, I.: Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3, 123–172 (2021). https://doi.org/10.1039/D0NA00760A

    Article  Google Scholar 

  27. Kittur, J., Desai, B., Chaudhari, R., Loharkar, P.K.: A comparative study of EMI shielding effectiveness of metals, metal coatings and carbon-based materials. IOP Conf. Series: Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/810/1/012019

    Article  Google Scholar 

  28. Jagadeesh Chandra, R.B., Shivamurthy, B., Kulkarni, S.D., Kumar, M.S.: Hybrid polymer composites for EMI shielding application- a review. Mater. Res. Express 6, 082008 (2019). https://doi.org/10.1088/2053-1591/AAFF00

    Article  Google Scholar 

  29. Hulle, A., Powar, A.: Textiles as EMI shields. J. Text. Sci. Eng. (2018). https://doi.org/10.4172/2165-8064.1000347

    Article  Google Scholar 

  30. Ghosh, S., Remanan, S., Mondal, S., Ganguly, S., Das, P., Singha, N., et al.: An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 344, 138–154 (2018). https://doi.org/10.1016/J.CEJ.2018.03.039

    Article  CAS  Google Scholar 

  31. Chudasama, D.: Protection against electromagnetic radiation with Textile material. Int. J. Electr. Electr. Eng. Res. (IJEEER) 3, 293–302 (2013)

    Google Scholar 

  32. Li, R., Zhang, L., Jia, L.: Influence of fabric structural model on shielding effectiveness of electromagnetic radiation shielding fabric. Int. J. Model. Ident. Control 11, 211–217 (2010). https://doi.org/10.1504/IJMIC.2010.037032

    Article  Google Scholar 

  33. Priyadarshini, D.-I.R.: A Review on the production methods and testing of textiles for electro magnetic interference (EMI) shielding. J. Eng. Res. Appl. 5, 34–40 (2015)

    Google Scholar 

  34. Miclăuş, S., Bechet, P., Paljanos, A., Aron, A.M., Mihai, G., Pătru, I., et al.: Shielding effectiveness of some conductive textiles and their capability to reduce the mobile phones radiation. Int. Conf. Knowl. based Organ. 22, 524–530 (2016). https://doi.org/10.1515/KBO-2016-0091

    Article  Google Scholar 

  35. Šafářová, V., Militký, J.: Electromagnetic shielding properties of woven fabrics made from high-performance fibers. Textile Res. J. 84, 1255–67 (2014). https://doi.org/10.1177/0040517514521118

    Article  CAS  Google Scholar 

  36. Zhang, S., Sun, H., Lan, T., Liu, X., Ran, Q.: High electromagnetic interference shielding effectiveness achieved by multiple internal reflection and absorption in polybenzoxazine/graphene foams. J. Appl. Polym. Sci. 138, 51318 (2021). https://doi.org/10.1002/APP.51318

    Article  CAS  Google Scholar 

  37. Shacklette, L.W., Colaneri, N.F.: EMI shielding measurements of conductive polymer blends. Conf. Rec. IEEE Instr. Meas. Technol. Conf. (1991). https://doi.org/10.1109/IMTC.1991.161543

    Article  Google Scholar 

  38. Schulz, R.B., Plantz, V.C., Brush, D.R.: Shielding theory and practice. IEEE Trans. Electromagn. Compat. 30, 187–201 (1988). https://doi.org/10.1109/15.3297

    Article  Google Scholar 

  39. Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., et al.: Electromagnetic interference shielding polymers and nanocomposites - a review. Polymers (2019). https://doi.org/10.1080/15583724.2018.1546737

    Article  Google Scholar 

  40. Al-Ghamdi, A.A., Al-Hartomy, O.A., Al-Solamy, F., Al-Ghamdi, A.A., El-Tantawy, F.: Electromagnetic wave shielding and microwave absorbing properties of hybrid epoxy resin/foliated graphite nanocomposites. J. Appl. Polym. Sci. 127, 2227–2234 (2013). https://doi.org/10.1002/APP.37904

    Article  CAS  Google Scholar 

  41. Al-Ghamdi, A.A., Al-Hartomy, O.A., El-Tantawy, F., Yakuphanoglu, F.: Novel polyvinyl alcohol/silver hybrid nanocomposites for high performance electromagnetic wave shielding effectiveness. Microsyst. Technol. 21, 859–868 (2015). https://doi.org/10.1007/S00542-014-2120-0

    Article  CAS  Google Scholar 

  42. Sankaran, S., Deshmukh, K., Ahamed, M.B., Khadheer Pasha, S.K.: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. A Appl. Sci. Manuf. 114, 49–71 (2018). https://doi.org/10.1016/J.COMPOSITESA.2018.08.006

    Article  CAS  Google Scholar 

  43. Munir, A.: Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: a review. Adv. Polym. Technol. 36, 362–370 (2017). https://doi.org/10.1002/ADV.21617

    Article  CAS  Google Scholar 

  44. Quan, B., Liang, X., Ji, G., Cheng, Y., Liu, W., Ma, J., et al.: Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloy. Compd. 728, 1065–1075 (2017). https://doi.org/10.1016/J.JALLCOM.2017.09.082

    Article  CAS  Google Scholar 

  45. Rohini, R., Bose, S.: Electromagnetic wave suppressors derived from crosslinked polymer composites containing functional particles: potential and key challenges. Nano-Struct. Nano-Objects 12, 130–146 (2017). https://doi.org/10.1016/J.NANOSO.2017.09.016

    Article  CAS  Google Scholar 

  46. Ott, H. W.: Gound Plane Current Distributon and Impedance. Electromagnetic Compatibility Engineering 391–411 (2009)

  47. Saini, P., Arora, M.: Microwave absorption and emi shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New Polym. Spec. Appl. (2012). https://doi.org/10.5772/48779

    Article  Google Scholar 

  48. Krishnasamy, J., Ramasamy, A., Das, A., Basu, A.: Effect of fabric cover and pore area distribution of carbon/stainless steel/polypropylene hybrid yarn-woven fabric on electromagnetic shielding effectiveness. J. Electr. Mater. (2016). https://doi.org/10.1007/S11664-016-4391-Y

    Article  Google Scholar 

  49. Su, C.I., Chern, J.T.: Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness. Textile Res. J. 74(1), 51–54 (2004). https://doi.org/10.1177/004051750407400109

    Article  CAS  Google Scholar 

  50. Lu, Y., Xue, L.: Electromagnetic interference shielding, mechanical properties and water absorption of copper/bamboo fabric (Cu/BF) composites. Compos. Sci. Technol. 72, 828–834 (2012). https://doi.org/10.1016/J.COMPSCITECH.2012.02.012

    Article  CAS  Google Scholar 

  51. Li, N.W., Ho, C.P., Yick, K.L., Zhou, J.Y.: Influence of inlaid material, yarn and knitted structure on the net buoyant force and mechanical properties of inlaid knitted fabric for buoyant swimwear. Textile Res. J. 91(13–14), 1452–1466 (2021)

    Article  CAS  Google Scholar 

  52. Soares, B.G., Barra, G.M.O., Indrusiak, T.: Conducting polymeric composites based on intrinsically conducting polymers as electromagnetic interference shielding/microwave absorbing materials–a review. J. Comp. Sci. (2021). https://doi.org/10.3390/JCS5070173

    Article  Google Scholar 

  53. Kim, H.K., Kim, M.S., Song, K., Park, Y.H., Kim, S.H., Joo, J., et al.: EMI shielding intrinsically conducting polymer/PET textile composites. Synth. Met. 135–136, 105–106 (2003). https://doi.org/10.1016/S0379-6779(02)00876-7

    Article  CAS  Google Scholar 

  54. Sarkar, K., Das, D., Chattopadhyay, S.: Smart and economic conductive textile for electromagnetic interference shielding. Procedia Engineering 216, 93–100 (2017). https://doi.org/10.1016/J.PROENG.2017.10.1118

    Article  Google Scholar 

  55. Tian, M., Du, M., Qu, L., Chen, S., Zhu, S., Han, G.: Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route. RSC Adv. 7, 42641–42652 (2017). https://doi.org/10.1039/C7RA08224J

    Article  CAS  Google Scholar 

  56. Wang, Q.-W., Zhang, H.-B., Liu, J., Zhao, S., Xie, X., Liu, L., et al.: Multifunctional and water-resistant mxene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Func. Mater. 29, 1806819 (2019). https://doi.org/10.1002/ADFM.201806819

    Article  Google Scholar 

  57. Jia, L.C., Zhang, G., Xu, L., Sun, W.J., Zhong, G.J., Lei, J., et al.: Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl. Mater. Interf. 11, 1680–1688 (2019). https://doi.org/10.1021/ACSAMI.8B18459/SUPPL_FILE/AM8B18459_SI_006.AVI

    Article  CAS  Google Scholar 

  58. Liu, L.-X., Chen, W., Zhang, H.-B., Wang, Q.-W., Guan, F., Yu, Z.-Z., et al.: Flexible and multifunctional silk textiles with biomimetic leaf-like mxene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Func. Mater. 29, 1905197 (2019). https://doi.org/10.1002/ADFM.201905197

    Article  CAS  Google Scholar 

  59. Wang, Y., Wang, W., Qi, Q., Xu, N., Yu, D.: Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27, 2829–2845 (2020). https://doi.org/10.1007/S10570-019-02949-1

    Article  CAS  Google Scholar 

  60. Sim, H.J., Lee, D.W., Kim, H., Jang, Y., Spinks, G.M., Gambhir, S., et al.: Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon N Y 155, 499–505 (2019). https://doi.org/10.1016/J.CARBON.2019.08.073

    Article  CAS  Google Scholar 

  61. Jia, L.C., Jia, X.X., Sun, W.J., Zhang, Y.P., Xu, L., Yan, D.X., et al.: Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Interf. 12, 53230–53238 (2020). https://doi.org/10.1021/ACSAMI.0C14397/SUPPL_FILE/AM0C14397_SI_002.MOV

    Article  CAS  Google Scholar 

  62. Surdu, L., Aileni, R.M., Radulescu, R.I., Chiriac, L.: Research regarding electromagnetic shielding achieved by the fabrics support. IOP Conf. Series: Mater. Sci. Eng. 827, 012060 (2020). https://doi.org/10.1088/1757-899X/827/1/012060

    Article  CAS  Google Scholar 

  63. Rybicki, T., Stempien, Z., Karbownik, I.: EMI Shielding and absorption of electroconductive textiles with PANI and PPy conductive polymers and numerical model approach. Energies 14(22), 7746 (2021)

    Article  CAS  Google Scholar 

  64. Hu, S., Wang, D., Periyasamy, A.P., Kremenakova, D., Militky, J., Tunak, M.: Ultrathin multilayer textile structure with enhanced emi shielding and air-permeable properties. Polymers (Basel) (2021). https://doi.org/10.3390/POLYM13234176

    Article  Google Scholar 

  65. Cheng, H.C., Chen, C.R., Cheng, K.B., Hsu, S.H.: Ag/GNS conductive laminated woven fabrics for EMI shielding applications. Mater. Manuf. Proc. 36(14), 1693–1700 (2021)

    Article  CAS  Google Scholar 

  66. Xie, C., Wang, Y., Yin, G., Qu, Z., Wang, W., Yu, D.: Carbon nanotubes chemical bonding with cotton/spandex blended fabric via thiol-epoxy click chemistry for durable electromagnetic interference shielding. Prog. Org. Coat. 161, 106473 (2021). https://doi.org/10.1016/J.PORGCOAT.2021.106473

    Article  CAS  Google Scholar 

  67. Zou, L., Lan, C., Zhang, S., Zheng, X., Xu, Z., Li, C., et al.: Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding. Nano-Micro Lett. 13, 1–16 (2021). https://doi.org/10.1007/S40820-021-00709-0/FIGURES/6

    Article  Google Scholar 

  68. Pušić, T., Šaravanja, B., Malarić, K.: Electromagnetic shielding properties of knitted fabric made from polyamide threads coated with silver. Materials (Basel) 14, 1–12 (2021). https://doi.org/10.3390/MA14051281

    Article  Google Scholar 

  69. Hyder, M.N., Kavian, R., Sultana, Z., Saetia, K., Chen, P.Y., Lee, S.W., et al.: Vacuum-assisted layer-by-layer nanocomposites for self-standing 3D mesoporous electrodes. Chem. Mater. 26, 5310–5318 (2014). https://doi.org/10.1021/CM502328H/SUPPL_FILE/CM502328H_SI_001.PDF

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director CSIR-AMPRI Bhopal for providing necessary institutional facilities and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Verma.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interests.

Ethical approval

The authors declare that the submitted manuscript is original. They acknowledge the current review has been conducted ethically, and the final shape of the research has been agreed upon by all authors.

Consent to participate

The author's consent to participate in this review study.

Consent to Publish

All the authors consent to publish the current research in a journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Dhangar, M., Paul, S. et al. Recent Advances for Fabricating Smart Electromagnetic Interference Shielding Textile: A Comprehensive Review. Electron. Mater. Lett. 18, 331–344 (2022). https://doi.org/10.1007/s13391-022-00344-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00344-w

Keywords

Navigation