Skip to main content
Log in

Facile One-Step Fabrication of 3-Dimensional SiO2-C Electrodes for Lithium-ion Batteries Using a Highly Porous SBA-15 Template and Pore-Forming Agent

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

A Correction to this article was published on 22 February 2022

This article has been updated

Abstract

SiO2-based anodes have attracted extensive attention due to their high theoretical capacity of 1,956 mAh g-1, stable cycle life, and abundance on Earth. However, their commercialization is still hindered by several intrinsic problems, such as poor electrical conductivity and electrochemical inactiveness. In this study, a 3-dimensional SiO2/C electrode is fabricated by introducing a pore-forming agent (polytetrafluoroethylene, PTFE) and partially carbonizing a polyvinylidene fluoride (PVDF) binder. During heat treatment at 600 °C, PTFE powders are unzipped to develop microsized pores. Meanwhile, the PVDF binder is partially carbonized to form highly conductive F-doped graphitic carbon. In particular, a highly porous platelet SBA-15 template is used as an SiO2 active material for large contact areas between SiO2 and carbonized PVDF. As a result, the structured SiO2/C anode exhibits better cycle performance and internal resistance than typical SiO2 electrodes: the structured SiO2/C anode delivers 294 mAh g-1, while the typical SiO2 anode is electrochemically inactive with Li+ ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008)

    Article  CAS  Google Scholar 

  2. Yao, Y., et al.: A carbon mixed amorphous-TiSx separator coating for lithium sulfur batteries. Mater. Chem. Phys. 258, 123923 (2021)

    Article  CAS  Google Scholar 

  3. Chung, W.Y., et al.: Petroleum waste hydrocarbon resin as a carbon source modified on a Si composite as a superior anode material in lithium ion batteries. Mater. Chem. Phys. 259, 124011 (2021)

    Article  CAS  Google Scholar 

  4. Zhang, L., et al.: Synthesis of N-doped multi-cavity Sn/C composite and utilization to anode in lithium ion batteries. Mater. Chem. Phys. 260, 124199 (2020)

    Article  Google Scholar 

  5. Li, N., et al.: Sandwiched N-carbon@Co9S8@Graphene nanosheets as high capacity anode for both half and full lithium-ion batteries. J. Energy Chem. 51, 62–71 (2020)

    Article  Google Scholar 

  6. Goriparti, S., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sour. 257, 421–443 (2014)

    Article  CAS  Google Scholar 

  7. Mao, C., et al.: Selecting the best graphite for long-life, high-energy Li-ion batteries. J. Electrochem. Soc. 165, A1837 (2018)

    Article  CAS  Google Scholar 

  8. Liu, J., Li, G., Wu, J.: Fe2O3–TeO2–MoO3 semiconductor glass-ceramics as anode materials for high specific capacity lithium ion batteries. Mater. Chem. Phys. 258, 123894 (2021)

    Article  CAS  Google Scholar 

  9. Li, X., et al.: Effect of dual local structures of amorphous Fe–Si films on the performance of anode of lithium-ion batteries. Mater. Chem. Phys. 243, 122666 (2020)

    Article  CAS  Google Scholar 

  10. Luo, J.D., et al.: Agaric-assisted synthesis of core-shell MnO@C microcubes as super-high-volumetric-capacity anode for lithium-ion batteries. Carbon 162, 36–45 (2020)

    Article  CAS  Google Scholar 

  11. Ashuri, M., He, Q., Shaw, L.L.: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8, 74–103 (2016)

    Article  CAS  Google Scholar 

  12. Li, P., Hwang, J.Y., Sun, Y.K.: Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery. ACS Nano 13, 2624–2633 (2019)

    CAS  Google Scholar 

  13. Suh, S., Choi, H., Kim, H.J., Eom, K.: Enhancing the electrochemical properties of a Si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries. J. Alloys Compd. 827, 154102 (2020)

    Article  CAS  Google Scholar 

  14. Park, J., Suh, S., Jeong, S., Kim, H.J.: New approach for the high electrochemical performance of silicon anode in lithium-ion battery: A rapid and large surface treatment using a high-energy pulsed laser. J. Power Sour. 491, 229573 (2021)

    Article  CAS  Google Scholar 

  15. Park, S.W., et al.: Enhanced capacity retention based silicon nanosheets electrode by CMC coating for lithium-ion batteries. Electron. Mater. Lett. 17, 268–276 (2021)

    Article  CAS  Google Scholar 

  16. Yoo, J.K., et al.: Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries. Electron. Mater. Lett. 13, 136–141 (2017)

    Article  CAS  Google Scholar 

  17. Gu, M., He, Y., Zheng, J., Wang, C.: Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy 17, 366–383 (2015)

    Article  CAS  Google Scholar 

  18. Szczech, J.R., Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011)

    Article  CAS  Google Scholar 

  19. Zhang, X., Hayashida, R., Tanaka, M., Watanabe, T.: Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Powder Technol. 371, 26–36 (2020)

    Article  CAS  Google Scholar 

  20. Guo, Y., et al.: Preparation of Rice Husk-Based C/SiO2 Composites and Their Performance as Anode Materials in Lithium Ion Batteries. J. Electron. Mater. 49, 1081–1089 (2020)

    Article  Google Scholar 

  21. Sun, S., et al.: Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries. J. Power Sour. 454, 227907 (2020)

    Article  CAS  Google Scholar 

  22. Doh, C.H., et al.: A new SiO/C anode composition for lithium-ion battery. J. Power Sour. 179, 367–370 (2008)

    Article  CAS  Google Scholar 

  23. Nagao, Y., et al.: Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering. J. Electrochem. Soc. 151, A1572 (2004)

    Article  CAS  Google Scholar 

  24. Zhang, Z., Huang, Q., Ma, W., Li, H.: Interfacial engineering of polyhedral carbon@hollowed carbon@SiO2 nanobox with tunable structure for enhanced lithium ion battery. Appl. Surf. Sci. 538, 148039 (2021)

    Article  CAS  Google Scholar 

  25. Park, D., et al.: Microstructure design of carbon-coated Nb2O5–Si composites as reversible Li storage materials. Electron. Mater. Lett. 16, 376–384 (2020)

    Article  CAS  Google Scholar 

  26. Kim, K., et al.: Si-SiOx-Al2O3 nanocomposites as high-capacity anode materials for Li-ion batteries. Electron. Mater. Lett. 13, 152–159 (2017)

    Article  CAS  Google Scholar 

  27. Zhang, X., et al.: Facile fabrication of SiO2 nanotubes coated with nitrogen-doped carbon layers as high-performance anodes for lithium-ion batteries. Ceram. Int. 47, 1373–1380 (2021)

    Article  CAS  Google Scholar 

  28. Wang, H., et al.: Highly reversible and fast lithium storage in graphene-wrapped SiO2 nanotube network. ChemElectroChem 2, 508–511 (2015)

    Article  CAS  Google Scholar 

  29. Xia, T., et al.: Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett. 13, 5289–5296 (2013)

    Article  CAS  Google Scholar 

  30. Yao, Y., et al.: Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. J. Power Sour. 196, 10240–10243 (2011)

    Article  CAS  Google Scholar 

  31. Xia, H., Yin, Z., Zheng, F., Zhang, Y.: Facile synthesis of SiO2/C composites as anode materials for lithium-ion batteries. Mater. Lett. 205, 83–86 (2017)

    Article  CAS  Google Scholar 

  32. Ali, S., et al.: Photo cured 3D porous silica-carbon (SiO2–C) membrane as anode material for high performance rechargeable Li-ion batteries. J. Alloy. Compd. 812, 152127 (2020)

    Article  CAS  Google Scholar 

  33. Aqeel, S.M., et al.: Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv. Comp. hybrid Mater. 1, 185–192 (2018)

    Article  CAS  Google Scholar 

  34. Xun, S., Song, X., Battaglia, V., Liu, G.: Conductive polymer binder-enabled cycling of pure tin nanoparticle composite anode electrodes for a lithium-ion battery. J. Electrochem. Soc. 160, A849 (2013)

    Article  CAS  Google Scholar 

  35. Eom, J.Y., Cao, L.: Effect of anode binders on low-temperature performance of automotive lithium-ion batteries. J. Power Sour. 441, 227178 (2019)

    Article  CAS  Google Scholar 

  36. Cao, S., et al.: In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 1073–1079 (2016)

    Article  CAS  Google Scholar 

  37. Li, Z., et al.: A new battery process technology inspired by partially carbonized polymer binders. Nano Energy 67, 104234 (2020)

    Article  CAS  Google Scholar 

  38. Piper, D.M., et al.: Conformal coatings of cyclized-PAN for mechanically resilient Si nano-composite anodes. Adv. Energy Mater. 3, 697–702 (2013)

    Article  CAS  Google Scholar 

  39. Chen, T., et al.: High performance binder-free SiOx/C composite LIB electrode made of SiOx and lignin. J. Power Sources 362, 236–242 (2017)

    Article  CAS  Google Scholar 

  40. Cho, H., Kim, K., Park, C.M., Jeong, G.: Partially carbonized poly (acrylic acid) grafted to carboxymethyl cellulose as an advanced binder for Si anode in Li-ion batteries. J. Electrochem. Sci. Technol. 10, 131–138 (2019)

    CAS  Google Scholar 

  41. Shen, X., et al.: Synthesis and anodic performance of TiO2-carbonized PAN electrode for lithium ion batteries. Chem. Phys. 530, 110639 (2020)

    Article  CAS  Google Scholar 

  42. Han, Y.J., Park, S.J.: Hydrogen storage behaviors of porous carbons derived from poly (vinylidene fluoride). J. Nanosci. Nanotechnol. 17, 8075–8080 (2017)

    Article  CAS  Google Scholar 

  43. Yang, Y., et al.: Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon 49, 3395–3403 (2011)

    Article  CAS  Google Scholar 

  44. Habedank, J.B., et al.: Increasing the discharge rate capability of lithium-ion cells with laser-structured graphite anodes: Modeling and simulation. J. Electrochem. Soc. 165, A1563 (2018)

    Article  CAS  Google Scholar 

  45. Lee, Y.J., et al.: Fabrication of macroporous Si alloy anodes using polystyrene beads for lithium ion batteries. J. Appl. Electrochem. 46, 695–702 (2016)

    Article  CAS  Google Scholar 

  46. Zhang, Y., et al.: Sodium storage in fluorine-rich mesoporous carbon fabricated by low-temperature carbonization of polyvinylidene fluoride with a silica template. RSC Adv. 6, 110850–110857 (2016)

    Article  CAS  Google Scholar 

  47. Zhao, D., Sun, J., Li, Q., Stucky, G.D.: Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mat. 12, 275 (2000)

    Article  CAS  Google Scholar 

  48. Kruk, M., Jaroniec, M., Ko, C.H., Ryoo, R.: Characterization of the porous structure of SBA-15. Chem. Mat. 12, 1961–1968 (2000)

    Article  CAS  Google Scholar 

  49. Li, J.H., et al.: The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance. Appl. Surf. Sci. 265, 663–670 (2013)

    Article  CAS  Google Scholar 

  50. Cao, Y., et al.: Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon 115, 503–514 (2017)

    Article  CAS  Google Scholar 

  51. Li, Y., et al.: Exploring electrochemistry and interface characteristics of lithium-ion cells with Li1.2Ni0.15Mn0.55Co0.1O2 positive and Li4Ti5O12 negative electrodes. J. Electrochem. Soc. 162, A7049 (2015)

    Article  CAS  Google Scholar 

  52. Gong, T., et al.: N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11, 9 (2019)

    Article  CAS  Google Scholar 

  53. Lee, J.H., et al.: Property control of graphene by employing “semi-ionic” liquid fluorination. Adv. Funct. Mater 23, 3329–3334 (2013)

    Article  CAS  Google Scholar 

  54. Kong, L., Chen, W.: Ionic liquid directed mesoporous carbon nanoflakes as an effiencient electrode material. Sci. Rep. 5, 1–9 (2015)

    Article  Google Scholar 

  55. Lv, P., et al.: Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries. J. Power Sour. 237, 291–294 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea [Grant No. 20204010600340] and a GIST Research Institute (GRI) grant funded by the GIST in 2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chanho Pak or Hyeong-Jin Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial or other interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original publication, the abstract for this article was inadvertently truncated after the text ‘while the typical SiO2 anode is electrochemically inactive with Li+ ions’. The abstract has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, S., Han, S., Yoon, H. et al. Facile One-Step Fabrication of 3-Dimensional SiO2-C Electrodes for Lithium-ion Batteries Using a Highly Porous SBA-15 Template and Pore-Forming Agent. Electron. Mater. Lett. 18, 187–196 (2022). https://doi.org/10.1007/s13391-021-00332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00332-6

Keywords

Navigation