Skip to main content
Log in

Mn Doped PbZrTiO3 Thick Films for the Renewable Piezoelectric Energy Harvesters for Mobile Communications

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Renewable energy systems including piezoelectric, thermoelectric, and photovoltaic devices have been intensively considered for the for the internet of things. Small energy sources with sustainable and robust properties for sensors, actuators, and communications were indispensable for the next industrial revolution. In this research, Mn doped PbZrTiO3 thick films piezoelectric renewable energy harvesters were prepared and employed for the sustainable energy sources for the energy harvesters. Nano sized powders were prepared by the high energy ball milling process. Calcination and sintering processes were sequentially processed for the device applications. Generated output energies were measured and tested by the impedance matching circuits and applied to the energy sources.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim, H.S., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12, 1129–1141 (2011)

    Article  Google Scholar 

  2. Ji, J.J., Koh, J.H.: Sintering temperature effects on the dielectric and piezoelectric properties of the Cu doped (1 − x)Na0.5K0.5NbO3 − xBiScO3 ceramics. J. Nanoelectron. Optoelectron. 12, 1196–1198 (2017)

    Article  Google Scholar 

  3. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  4. Newnham, R.E., Bowen, L.J., Klicker, K.A., Cross, L.E.: Composite piezoelectric transducers. Mater. Des. 2, 93–106 (1980)

    Article  Google Scholar 

  5. Sahu, T., Behera, B.: Dielectric, electrical and conduction mechanism study of 0.6BiFeO3–0.4PbTiO3. Trans. Elect. Mat. 19, 396–402 (2018)

    Article  Google Scholar 

  6. Turkmen, A.C., Celik, C.: Energy harvesting with the piezoelectric material integrated shoe. Energy 150, 556–564 (2018)

    Article  Google Scholar 

  7. Lu, Q., Liu, L., Scarpa, F., Leng, J., Liu, Y.: A novel composite multi-layer piezoelectric energy harvester. Compos. Struct. 201, 121–130 (2018)

    Article  Google Scholar 

  8. Shin, D.J., Jeong, S.J., Koh, J.H.: A comparative research on maximized output power between disc type and multilayered type piezoelectric energy harvesters. Sci. Adv. Mater. 9, 1223–1227 (2017)

    Article  Google Scholar 

  9. Zuo, C., Min, H., Wei, L., Kai, C.: Trust-aware and low energy consumption security topology protocol of wireless sensor network. J. Sens. 2015, 1–10 (2015)

    Google Scholar 

  10. Matko, V., Milanović, M.: Temperature-compensated Capacitance-frequency converter with high resolution. Sens. Actuators A Phys. 220, 262–269 (2014)

    Article  Google Scholar 

  11. Singh, B., Devi, R.: Parameterized comparison of carbon nano tube piezoresisitive nano pressure sensor. Sens. Lett. 15, 676–681 (2017)

    Article  Google Scholar 

  12. Saleem, M., Hwan, L.D., Kim, I., Kim, M.S., Maqbool, A., Nisar, U., Pervez, S.A., Farooq, U., Farooq, M.U., Khalil, H.M.W., Jeong, S.J.: Frequency-dependent properties of Bi-based relaxor/ferroelectric ceramic composites. Sci Rep. 8, 14146 (2018)

    Article  Google Scholar 

  13. Hu, C., Cheng, L., Wang, Z., Zheng, Y., Bai, S., Qin, Y.: A transparent antipeep piezoelectric nanogenerator to harvest tapping energy on screen. Small 12, 1315–1321 (2016)

    Article  Google Scholar 

  14. Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6V Nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)

    Article  Google Scholar 

  15. Xie, J., Mane, X.P., Green, C.W., Mossi, K.M., Leang, K.K.: Performance of thin piezoelectric materials for pyroelectric energy harvesting. J. Intell. Mater. Syst. Struct. 21, 243–249 (2010)

    Article  Google Scholar 

  16. Kim, H.J., Kim, Y.J.: High performance flexible piezoelectric pressure sensor based on CNTsdoped 0–3 ceramic-epoxy nanocomposites. Mater. Des. 151, 133–140 (2018)

    Article  Google Scholar 

  17. Jeong, C.K., Lee, J., Han, S., Ryu, J., Hwang, G.T., Park, D.Y., Park, J.H., Lee, S.S., Byun, M., Ko, S.H., Lee, K.J.: A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 27, 2866–2875 (2015)

    Article  Google Scholar 

  18. Shin, D.J., Kim, J., Koh, J.H.: Piezoelectric properties of (1-x)BZT-xBCT system for energy harvesting applications. J. Eur. Ceram. Soc. 38, 4395–4403 (2018)

    Article  Google Scholar 

  19. Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., Lee, K.J.: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 2999–3004 (2012)

    Article  Google Scholar 

  20. Whiter, R.A., Narayan, V., Kar-Narayan, S.: A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Adv. Energy. Mater. 4, 1400519 (2014)

    Article  Google Scholar 

  21. Bae, S.H., Kahya, O., Sharma, B.K., Kwon, J., Cho, H.J., Ozyilmaz, B., Ahn, J.H.: Graphene-P(VDF-TrFE) multilayer film for flexible applications. ACS Nano 7, 3130–3138 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hyuk Koh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Kim, J., Ji, JH. et al. Mn Doped PbZrTiO3 Thick Films for the Renewable Piezoelectric Energy Harvesters for Mobile Communications. Electron. Mater. Lett. 15, 421–427 (2019). https://doi.org/10.1007/s13391-019-00136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00136-9

Keywords

Navigation