Skip to main content
Log in

Dielectric, Electrical and Conduction Mechanism Study of 0.6BiFeO3–0.4PbTiO3

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

0.6BiFeO3–0.4PbTiO3 sample was prepared using conventional solid state reaction route. The X-ray diffraction confirmed the formation of the sample. The microstructure study was carried out using field emission scanning electron microscope. A good dielectric value was observed at room temperature. The impedance study showed the non-Debye type of behaviour and the Nyquist plot fit confirmed the contribution of both grain and grain boundary effect in the material. The ac conductivity obeyed Jonscher’s power law. The temperature variation of frequency exponent suggested that overlapping large polaron tunnelling model was appropriate to understand the conduction mechanism within the temperature range (250–350 °C). The temperature variation of ac conductivity followed Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Zhang, Y. Sui, X. Wang, Y. Wang, Z. Wang, J. Alloys Compd. 507, 157 (2010)

    Article  Google Scholar 

  2. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, O. Eriksson, Phys. Rev. B 74, 224412 (2006)

    Article  Google Scholar 

  3. J.F. Scott, Nat. Mater. 6, 256 (2007)

    Article  Google Scholar 

  4. M. Bibes, A. Barthelemy, Nat. Mater. 7, 425 (2008)

    Article  Google Scholar 

  5. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  6. D. Lebeugle, D. Colson, A. Forget, M. Viret, Appl. Phys. Lett. 91, 022907 (2007)

    Article  Google Scholar 

  7. D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, G. Sharma, Nanoscale 2, 1149 (2010)

    Article  Google Scholar 

  8. C. Fanggao, S. Guilin, F. Kun, Q. Ping, Z. Qijun, J. Rare Earths 24, 273 (2006)

    Article  Google Scholar 

  9. G.L. Yuan, S.W. Or, H.L.W. Chan, Z.G. Liu, J. Appl. Phys. 101, 024106 (2007)

    Article  Google Scholar 

  10. S.W. Lee, K.B. Shim, K.H. Auh, P. Knott, Mater. Lett. 38, 356 (1999)

    Article  Google Scholar 

  11. B. Jaffe Jr., W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)

    Google Scholar 

  12. S. Zhang, H. Li, M. Li, Mater. Lett. 62, 2438 (2008)

    Article  Google Scholar 

  13. M.A. Khan, T.P. Comyn, A.J. Bell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2583 (2007)

    Article  Google Scholar 

  14. S. Bhattacharjee, D. Pandey, J. Appl. Phys. 110, 084105 (2011)

    Article  Google Scholar 

  15. R. Katoch, C.D. Sekhar, V. Adyam, J.F. Scott, R. Gupta, A. Garg, J. Phys. Condens. Mater. 28, 075901 (2016)

    Article  Google Scholar 

  16. S.A. Fedulov, P.B. Ladyzhinskii, I.L. Pyatigorskaya, Y.N. Venevtsev, Sov. Phys. Solid State. 6, 375 (1964)

    Google Scholar 

  17. J. Chen, X.R. Xing, G.R. Liu, J.H. Li, Y.T. Liu, Appl. Phys. Lett. 89, 3 (2006)

    Google Scholar 

  18. J. Zhuang, J. Zhao, L.W. Su, H. Wu, A.A. Bokov, W. Ren, Z.G. Ye, J. Mater. Chem. C 3, 12450 (2015)

    Article  Google Scholar 

  19. A. Basu, R. Jana, R. Ranjan, G.D. Mukherjee, Phys. Rev. B 93, 214114 (2016)

    Article  Google Scholar 

  20. S. Bhattacharjee, S. Tripathi, D. Pandey, Appl. Phys. Lett. 91, 042903 (2007)

    Article  Google Scholar 

  21. V.F. Freitas, L.F. Cotica, I.A. Santos, D. Garcia, J.A. Eiras, J. Eur. Ceram. Soc. 31, 2965 (2011)

    Article  Google Scholar 

  22. A. Siddaramanna, C. Srivastava, B. Narayana Rao, R. Ranjan, Solid State Commun. 160, 56 (2013)

    Article  Google Scholar 

  23. S. Liu, L. Huang, J. Li, S.O. Brien, J. Appl. Phys. 112, 014108 (2012)

    Article  Google Scholar 

  24. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, J. Appl. Phys. 103, 024105 (2008)

    Article  Google Scholar 

  25. R. Katoch, C. Sekhar, V. Adyam, J.F. Scott, R. Gupta, A. Garg, J. Phys, Condens. Mater. 28, 075901 (2016)

    Article  Google Scholar 

  26. J.R. Macdonald, Impedance Spectroscopy-Emphasizing Solid Materials and Systems, 2nd edn. (Wiley-Interscience, New York, 1987)

    Google Scholar 

  27. J. Plocharski, W. Wieczoreck, Solid State Ionics 28, 979 (1988)

    Article  Google Scholar 

  28. B.V.R. Chowdari, R. Gopalkrishnnan, Solid State Ionics 23, 225 (1987)

    Article  Google Scholar 

  29. T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, J. Mater. Sci.: Mater. Electron. 26, 3069 (2015)

    Google Scholar 

  30. B. Yeum, ZSimpWin Version 2.00, E Chem Software (2001)

  31. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084107 (2005)

    Article  Google Scholar 

  32. A.K. Jonscher, Nature 276, 673 (1977)

    Article  Google Scholar 

  33. T. Sahu, B. Behera, J. Mater. Sci.: Mater. Electron. 29, 7412 (2018)

    Google Scholar 

  34. A. Ghosh, Phys. Rev. B 42, 1388 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Truptimayee Sahu) acknowledges financial support from a DST-INSPIRE Fellowship, New Delhi, India to carry out the research. This author also acknowledges financial support through DRS-1 from UGC (No. 530/17/DRS/2009), New Delhi, India under SAP and the FIST program of DST (No. SR/FST/PSI-179/2012), New Delhi, India for the development of research work at School of Physics, Sambalpur University, Odisha. The other author (B. Behera) acknowledges support from SERB under the DST Fast Track Scheme for Young Scientists (Project No. SR/FTP/PS-036/2011), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banarji Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, T., Behera, B. Dielectric, Electrical and Conduction Mechanism Study of 0.6BiFeO3–0.4PbTiO3. Trans. Electr. Electron. Mater. 19, 396–402 (2018). https://doi.org/10.1007/s42341-018-0057-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0057-1

Keywords

Navigation