Skip to main content

Advertisement

Log in

Corrosion of Additively Manufactured Metallic Components: A Review

  • Review Article--Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The unique additive manufacturing (AM) attributes such as tool-less design, on-site fabrication, short production cycle, and complex structures fabrication can make AM market penetration deeper. The sustained improvements in AM’s computational hardware and software, advanced automation, affordable equipment, and process, structural, and metallurgical understanding are likely to contribute to AMs’ more comprehensive commercial adaptation. However, several scientific and technological issues like process-induced defects and microstructural heterogeneity limit its growth in replacing conventional products. AM mechanical properties are comparable to those produced conventionally, and the same is true about its corrosion behavior. However, AM process uncertainties can vary part properties, causing significant discrepancies in corrosion results. Controlling corrosion in AM alloys requires a proper understanding of the process and microstructural evolution. Optimizing processing conditions is critical for part’s high productivity and minimal defects. Similarly, post-processing conditions are vital to infuse desired mechanical and chemical properties. Regardless of the processing conditions, corrosion is integral to material stability that needs scientific input to understand and develop mechanical and microstructural properties for excellent corrosion-resistant AM materials. This study aims to analyze the scientific work done in the corrosion analysis of AM materials and to suggest future work potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haghdadi, N.; Laleh, M.; Moyle, M.; Primig, S.: Additive manufacturing of steels: a review of achievements and challenges. J. Mater. Sci. 56, 64–107 (2021). https://doi.org/10.1007/s10853-020-05109-0

    Article  Google Scholar 

  2. Zadpoor, A.A.: Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater. 85, 41–59 (2019). https://doi.org/10.1016/j.actbio.2018.12.038

    Article  Google Scholar 

  3. Khan, H.M.; Karabulut, Y.; Kitay, O.; Kaynak, Y.; Jawahir, I.S.: Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: a review. Mach. Sci. Technol. 25, 118–176 (2021). https://doi.org/10.1080/10910344.2020.1855649

    Article  Google Scholar 

  4. Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A.: Steels in additive manufacturing: a review of their microstructure and properties. Mater. Sci. Eng. A 772, 138633 (2020). https://doi.org/10.1016/j.msea.2019.138633

    Article  Google Scholar 

  5. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V., et al.: A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 144, 98–128 (2018). https://doi.org/10.1016/j.matdes.2018.02.018

    Article  Google Scholar 

  6. Maskery, I.; Aboulkhair, N.T.; Aremu, A.O.; Tuck, C.J.; Ashcroft, I.A.: Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit. Manuf. 16, 24–29 (2017). https://doi.org/10.1016/j.addma.2017.04.003

    Article  Google Scholar 

  7. Al-Mamun, N.S.; Mairaj Deen, K.; Haider, W.; Asselin, E.; Shabib, I.: Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: the effect of citrate ions. Addit. Manuf. 34, 101237 (2020). https://doi.org/10.1016/j.addma.2020.101237

    Article  Google Scholar 

  8. DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O., et al.: Additive manufacturing of metallic components – process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  9. Sander, G.; Tan, J.; Balan, P.; Gharbi, O.; Feenstra, D.R.; Singer, L., et al.: Corrosion of additively manufactured alloys: a review. Corrosion 74, 1318–1350 (2018). https://doi.org/10.5006/2926

    Article  Google Scholar 

  10. Zhao, B.; Wang, H.; Qiao, N.; Wang, C.; Hu, M.: Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Mater. Sci. Eng. C 70, 832–841 (2017). https://doi.org/10.1016/j.msec.2016.07.045

    Article  Google Scholar 

  11. Zhao, X.; Li, S.; Zhang, M.; Liu, Y.; Sercombe, T.B.; Wang, S., et al.: Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95, 21–31 (2016). https://doi.org/10.1016/j.matdes.2015.12.135

    Article  Google Scholar 

  12. Murr, L.E.; Gaytan, S.M.; Ramirez, D.A.; Martinez, E.; Hernandez, J.; Amato, K.N., et al.: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 1–14 (2012). https://doi.org/10.1016/S1005-0302(12)60016-4

    Article  Google Scholar 

  13. Wysocki, B.; Maj, P.; Sitek, R.; Buhagiar, J.; Kurzydłowski, K.J.; Święszkowski, W.: Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl. Sci. (2017). https://doi.org/10.3390/app7070657

    Article  Google Scholar 

  14. Liu, S.; Shin, Y.C.: Additive manufacturing of Ti6Al4V alloy: a review. Mater. Des. 164, 107552 (2019). https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  15. Zhang, F.; Yang, M.; Clare, A.T.; Lin, X.; Tan, H.; Chen, Y.: Microstructure and mechanical properties of Ti-2Al alloyed with Mo formed in laser additive manufacture. J. Alloys Compd. 727, 821–831 (2017). https://doi.org/10.1016/j.jallcom.2017.07.324

    Article  Google Scholar 

  16. Ni, X.; Kong, D.; Wu, W.; Zhang, L.; Dong, C.; He, B., et al.: Corrosion Behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds. J. Mater. Eng. Perform. 27, 3667–3677 (2018). https://doi.org/10.1007/s11665-018-3446-z

    Article  Google Scholar 

  17. Mahamood, R.M.; Akinlabi, E.T.: Effect of the scanning speed of treatment on the microstructure, microhardness, wear, and corrosion behavior of laser metal-deposited Ti–6AL–4V/TiC composite. Mater. Sci. 53, 76–85 (2017). https://doi.org/10.1007/s11003-017-0046-2

    Article  Google Scholar 

  18. Yanjin, L.; Yiliang, G.; Junjie, L.; Sai, G.; Songquan, W.; Jinxin, L.: Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM. Rapid Prototyp. J. 23, 28–33 (2017). https://doi.org/10.1108/RPJ-07-2015-0085

    Article  Google Scholar 

  19. Kong, D.; Ni, X.; Dong, C.; Lei, X.; Zhang, L.; Man, C., et al.: Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater. Des. 152, 88–101 (2018). https://doi.org/10.1016/j.matdes.2018.04.058

    Article  Google Scholar 

  20. Wang, G.; Liu, Q.; Rao, H.; Liu, H.; Qiu, C.: Influence of porosity and microstructure on mechanical and corrosion properties of a selectively laser melted stainless steel. J. Alloys Compd. 831, 154815 (2020). https://doi.org/10.1016/j.jallcom.2020.154815

    Article  Google Scholar 

  21. Subrahmanyam, A.P.S.V.; Prasad, K.S.; Srinivasa Rao, P.: A review on mechanical and corrosion behaviour of DMLS materials. Eng. Sci. Technol. 1, 62–83 (2020). https://doi.org/10.37256/est.122020319

    Article  Google Scholar 

  22. Brika, S.E.; Letenneur, M.; Dion, C.A.; Brailovski, V.: Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Addit. Manuf. 31, 100929 (2020). https://doi.org/10.1016/j.addma.2019.100929

    Article  Google Scholar 

  23. Chen, W.; Yin, G.; Huang, Z.; Feng, Z.: Effect of the particle size of 316L stainless steel on the corrosion characteristics of the steel fabricated by selective laser melting. Int. J. Electrochem. Sci. 13, 10217–10232 (2018)

    Article  Google Scholar 

  24. Irrinki, H.; Harper, T.; Badwe, S.; Stitzel, J.; Gulsoy, O.; Gupta, G., et al.: Effects of powder characteristics and processing conditions on the corrosion performance of 17–4 PH stainless steel fabricated by laser-powder bed fusion. Prog. Addit. Manuf. 3, 39–49 (2018). https://doi.org/10.1007/s40964-018-0048-0

    Article  Google Scholar 

  25. Cacace, S.; Semeraro, Q.: Influence of the atomization medium on the properties of stainless steel SLM parts. Addit. Manuf. 36, 101509 (2020). https://doi.org/10.1016/j.addma.2020.101509

    Article  Google Scholar 

  26. Tobar, M.J.; Amado, J.M.; Montero, J.; Yáñez, A.: A study on the effects of the use of gas or water atomized AISI 316L steel powder on the corrosion resistance of laser deposited material. Phys. Procedia 83, 606–12 (2016). https://doi.org/10.1016/j.phpro.2016.08.063

    Article  Google Scholar 

  27. Stoudt, M.R.; Ricker, R.E.; Lass, E.A.; Levine, L.E.: Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17–4 PH stainless steel. JOM 69, 506–515 (2017). https://doi.org/10.1007/s11837-016-2237-y

    Article  Google Scholar 

  28. Wang, X.J.; Zhang, L.C.; Fang, M.H.; Sercombe, T.B.: The effect of atmosphere on the structure and properties of a selective laser melted Al–12Si alloy. Mater. Sci. Eng. A 597, 370–375 (2014)

    Article  Google Scholar 

  29. Everton, S.K.; Hirsch, M.; Stravroulakis, P.; Leach, R.K.; Clare, A.T.: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016). https://doi.org/10.1016/j.matdes.2016.01.099

    Article  Google Scholar 

  30. Mukherjee, T.; Wei, H.L.; De, A.; DebRoy, T.: Heat and fluid flow in additive manufacturing – part ii: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Comput. Mater. Sci. 150, 369–380 (2018). https://doi.org/10.1016/j.commatsci.2018.04.027

    Article  Google Scholar 

  31. Lee YS, Zhang W. Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: International solid free form fabrication symposium Austin, 2015, p. 1154–65

  32. Patterson, A.E.; Messimer, S.L.; Farrington, P.A.: Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies 5, 15 (2017). https://doi.org/10.3390/technologies5020015

    Article  Google Scholar 

  33. Khan, H.M.; Özer, G.; Tarakci, G.; Coskun, M.; Koc, E.; Kaynak, Y.: The impact of aging and drag-finishing on the surface integrity and corrosion behavior of the selective laser melted maraging steel samples. Materwiss Werksttech 52, 60–73 (2021). https://doi.org/10.1002/mawe.202000139

    Article  Google Scholar 

  34. Fathi, P.; Mohammadi, M.; Duan, X.; Nasiri, A.M.: A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360. 1 aluminum. J. Mater. Process. Technol. 259, 1–14 (2018)

    Article  Google Scholar 

  35. Sharland, S.M.: A review of the theoretical modelling of crevice and pitting corrosion. Corros. Sci. 27, 289–323 (1987)

    Article  Google Scholar 

  36. Tang, Y.; Dai, N.; Wu, J.; Jiang, Y.; Li, J.: Effect of surface roughness on pitting corrosion of 2205 duplex stainless steel investigated by electrochemical noise measurements. Materials (Basel) 12, 738 (2019)

    Article  Google Scholar 

  37. Qiu, C.; Wang, Z.; Aladawi, A.S.; Al Kindi, M.; Al Hatmi, I.; Chen, H., et al.: Influence of laser processing strategy and remelting on surface structure and porosity development during selective laser melting of a metallic material. Metall. Mater. Trans. A 50, 4423–4434 (2019)

    Article  Google Scholar 

  38. Vilaro, T.; Colin, C.; Bartout, J.D.: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42, 3190–3199 (2011). https://doi.org/10.1007/s11661-011-0731-y

    Article  Google Scholar 

  39. Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.M.; King, W.E.: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016). https://doi.org/10.1201/9781315119106

    Article  Google Scholar 

  40. Schaller, R.F.; Taylor, J.M.; Rodelas, J.; Schindelholz, E.J.: Corrosion properties of powder bed fusion additively manufactured 17–4 PH stainless steel. Corrosion 73, 796–807 (2017)

    Article  Google Scholar 

  41. Brooks, J.W.; Qiu, C.; Attallah, M.M.; Panwisawas, C.; Ward, M.; Basoalto, H.C.: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96, 72–79 (2015). https://doi.org/10.1016/j.actamat.2015.06.004

    Article  Google Scholar 

  42. Qiu, C.; Adkins, N.J.E.; Attallah, M.M.: Selective laser melting of Invar 36: microstructure and properties. Acta Mater. 103, 382–395 (2016)

    Article  Google Scholar 

  43. Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A.: Biomedical implants: corrosion and its prevention-a review. Recent Patents Corros. Sci. 2, 40–54 (2010). https://doi.org/10.2174/1877610801002010040

    Article  Google Scholar 

  44. Xie, F.; He, X.; Cao, S.; Mei, M.; Qu, X.: Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti-Mo alloys for biomedical applications. Electrochim. Acta 105, 121–129 (2013). https://doi.org/10.1016/j.electacta.2013.04.105

    Article  Google Scholar 

  45. Seah, K.H.W.; Thampuran, R.; Teoh, S.H.: The influence of pore morphology on corrosion. Corros. Sci. 40, 547–56 (1998). https://doi.org/10.1016/S0010-938X(97)00152-2

    Article  Google Scholar 

  46. Karageorgiou, V.; Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)

    Article  Google Scholar 

  47. Kuboki, Y.; Takita, H.; Kobayashi, D.; Tsuruga, E.; Inoue, M.; Murata, M., et al.: BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. 39, 190–199 (1998)

    Article  Google Scholar 

  48. Yuan, L.; Ding, S.; Wen, C.: Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact. Mater. 4, 56–70 (2019). https://doi.org/10.1016/j.bioactmat.2018.12.003

    Article  Google Scholar 

  49. Geenen, K.; Röttger, A.; Theisen, W.: Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting. Mater. Corros. 68, 764–775 (2017). https://doi.org/10.1002/maco.201609210

    Article  Google Scholar 

  50. Ertuğrul, O.; Öter, Z.Ç.; Yılmaz, M.S.; Şahin, E.; Coşkun, M.; Tarakçı, G., et al.: Effect of HIP process and subsequent heat treatment on microstructure and mechanical properties of direct metal laser sintered AlSi10Mg alloy. Rapid Prototyp. J. 26(8), 1421–1434 (2020)

    Article  Google Scholar 

  51. Shahriari, A.; Khaksar, L.; Nasiri, A.; Hadadzadeh, A.; Amirkhiz, B.S.; Mohammadi, M.: Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel. Electrochim. Acta 339, 135925 (2020). https://doi.org/10.1016/j.electacta.2020.135925

    Article  Google Scholar 

  52. Mohtadi-Bonab, M.A.: Effects of different parameters on initiation and propagation of stress corrosion cracks in pipeline steels: a review. Metals (Basel) 9, 1–18 (2019). https://doi.org/10.3390/met9050590

    Article  Google Scholar 

  53. De, B.E.; Sistiaga, M.L.M.; Thielemans, F.; Vanmeensel, K.: Corrosion testing of a heat treated 316 L functional part produced by selective laser melting. Mater. Sci. Appl. 08, 223–233 (2017). https://doi.org/10.4236/msa.2017.83015

    Article  Google Scholar 

  54. Gao, M.; Wang, Z.; Li, X.; Zeng, X.: The effect of deposition patterns on the deformation of substrates during direct laser fabrication. J. Eng. Mater. Technol. 135, 034502 (2013)

    Article  Google Scholar 

  55. Oter, Z.C.Z.C.; Coskun, M.; Akca, Y.; Surmen, O.; Yilmaz, M.S.; Ozer, G., et al.: Support optimization for overhanging parts in direct metal laser sintering. Optik (Stuttg) 181, 575–581 (2019). https://doi.org/10.1016/j.ijleo.2018.12.072

    Article  Google Scholar 

  56. Zhuo, L.; Wang, Z.; Zhang, H.; Yin, E.; Wang, Y.; Xu, T., et al.: Effect of post-process heat treatment on microstructure and properties of selective laser melted AlSi10Mg alloy. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2018.09.109

    Article  Google Scholar 

  57. Ettefagh, A.H.; Guo, S.: Electrochemical behavior of AISI316L stainless steel parts produced by laser-based powder bed fusion process and the effect of post annealing process. Addit. Manuf. 22, 153–156 (2018)

    Google Scholar 

  58. Cruz, V.; Chao, Q.; Birbilis, N.; Fabijanic, D.; Hodgson, P.D.; Thomas, S.: Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corros. Sci. 164, 108314 (2020). https://doi.org/10.1016/j.corsci.2019.108314

    Article  Google Scholar 

  59. Wu, B.; Pan, Z.; Li, S.; Cuiuri, D.; Ding, D.; Li, H.: The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution. Corros. Sci. 137, 176–83 (2018). https://doi.org/10.1016/j.corsci.2018.03.047

    Article  Google Scholar 

  60. Dai, N.; Zhang, J.; Chen, Y.; Zhang, L.-C.: Heat treatment degrading the corrosion resistance of selective laser melted Ti-6Al-4V Alloy. J Electrochem. Soc. 164, C428–C434 (2017). https://doi.org/10.1149/2.1481707jes

    Article  Google Scholar 

  61. Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghani, S.A.C.; Kurniawan, T.; Ismail, M.H., et al.: Study of corrosion in biocompatible metals for implants: a review. J. Alloys Compd. 701, 698–715 (2017). https://doi.org/10.1016/j.jallcom.2017.01.196

    Article  Google Scholar 

  62. Man, C.; Dong, C.; Liu, T.; Kong, D.; Wang, D.; Li, X.: The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl. Surf. Sci. 467–468, 193–205 (2019). https://doi.org/10.1016/j.apsusc.2018.10.150

    Article  Google Scholar 

  63. Huang, L.; Wang, X.; Zhao, X.; Wang, C.; Yang, Y.: Analysis on the key role in corrosion behavior of CoCrNiAlTi-based high entropy alloy. Mater. Chem. Phys. 259, 1240 (2021). https://doi.org/10.1016/j.matchemphys.2020.124007

    Article  Google Scholar 

  64. Lodhi, M.J.K.; Deen, K.M.; Haider, W.: Corrosion behavior of additively manufactured 316L stainless steel in acidic media. Materialia 2, 111–121 (2018). https://doi.org/10.1016/j.mtla.2018.06.015

    Article  Google Scholar 

  65. Harun, W.S.W.; Kamariah, M.S.I.N.; Muhamad, N.; Ghani, S.A.C.; Ahmad, F.; Mohamed, Z.: A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol. 327, 128–151 (2018). https://doi.org/10.1016/j.powtec.2017.12.058

    Article  Google Scholar 

  66. Güleryüz, H.; Çimenoğlu, H.: Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy. Biomaterials 25, 3325–3333 (2004)

    Article  Google Scholar 

  67. Li, M.; Yin, T.; Wang, Y.; Du, F.; Zou, X.; Gregersen, H., et al.: Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro. Mater. Sci. Eng. C 43, 641–648 (2014)

    Article  Google Scholar 

  68. Lodhi, M.J.K.; Deen, K.M.; Greenlee-Wacker, M.C.; Haider, W.: Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications. Addit. Manuf. 27, 8–19 (2019)

    Google Scholar 

  69. Chao, Q.; Cruz, V.; Thomas, S.; Birbilis, N.; Collins, P.; Taylor, A., et al.: On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scr. Mater. 141, 94–98 (2017). https://doi.org/10.1016/j.scriptamat.2017.07.037

    Article  Google Scholar 

  70. Ryan, M.P.; Williams, D.E.; Chater, R.J.; Hutton, B.M.; McPhail, D.S.: Why stainless steel corrodes. Nature 415, 770–774 (2002). https://doi.org/10.1038/415770a

    Article  Google Scholar 

  71. Sedriks, A.J.: Corrosion of stainless steel, 2nd edn. New York, Wiley (1996)

    Google Scholar 

  72. Stewart, J.; Williams, D.E.: The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions. Corros. Sci. 33, 457–74 (1992). https://doi.org/10.1016/0010-938X(92)90074-D

    Article  Google Scholar 

  73. Liu, Y.; Yang, Y.; Mai, S.; Wang, D.; Song, C.: Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater. Des. 87, 797–806 (2015)

    Article  Google Scholar 

  74. Laleh, M.; Hughes, A.E.; Xu, W.; Cizek, P.; Tan, M.Y.: Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing. Corros. Sci. 165, 108412 (2020). https://doi.org/10.1016/j.corsci.2019.108412

    Article  Google Scholar 

  75. Streicher, R.M.; Schmidt, M.; Fiorito, S.: Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine 2(6), 861–874 (2007)

    Article  Google Scholar 

  76. Revilla, R.I.; Van Calster, M.; Raes, M.; Arroud, G.; Andreatta, F.; Pyl, L., et al.: Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: a comparative study bringing insights into the impact of microstructure on their passivity. Corros. Sci. 176, 1089 (2020). https://doi.org/10.1016/j.corsci.2020.108914

    Article  Google Scholar 

  77. Li, J.C.M.: Mechanical grain growth in nanocrystalline copper. Phys. Rev. Lett. 96, 215506 (2006)

    Article  Google Scholar 

  78. Karthik, D.; Swaroop, S.: Effect of laser peening on electrochemical properties of titanium stabilized 321 steel. Mater. Chem. Phys. 193, 147–55 (2017). https://doi.org/10.1016/j.matchemphys.2017.02.022

    Article  Google Scholar 

  79. Sun, S.H.; Ishimoto, T.; Hagihara, K.; Tsutsumi, Y.; Hanawa, T.; Nakano, T.: Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting. Scr. Mater. 159, 89–93 (2019). https://doi.org/10.1016/j.scriptamat.2018.09.017

    Article  Google Scholar 

  80. Shaeri Karimi, M.H.; Yeganeh, M.; Alavi Zaree, S.R.; Eskandari, M.: Corrosion behavior of 316L stainless steel manufactured by laser powder bed fusion (L-PBF) in an alkaline solution. Opt. Laser Technol. 138, 106918 (2021). https://doi.org/10.1016/j.optlastec.2021.106918

    Article  Google Scholar 

  81. Irrinki, H.; Jangam, J.S.D.; Pasebani, S.; Badwe, S.; Stitzel, J.; Kate, K., et al.: Effects of particle characteristics on the microstructure and mechanical properties of 17–4 PH stainless steel fabricated by laser-powder bed fusion. Powder Technol. 331, 192–203 (2018)

    Article  Google Scholar 

  82. Stendal, J.; Fergani, O.; Yamaguchi, H.; Espallargas, N.: A Comparative tribocorrosion study of additive manufactured and wrought 316L stainless steel in simulated body fluids. J. Bio- Tribo-Corros. 4, 9 (2018). https://doi.org/10.1007/s40735-017-0125-9

    Article  Google Scholar 

  83. Lou, X.; Andresen, P.L.; Rebak, R.B.: Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior. J. Nucl. Mater. 499, 182–190 (2018). https://doi.org/10.1016/j.jnucmat.2017.11.036

    Article  Google Scholar 

  84. Trelewicz, J.R.; Halada, G.P.; Donaldson, O.K.; Manogharan, G.: Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel. JOM 68, 850–859 (2016). https://doi.org/10.1007/s11837-016-1822-4

    Article  Google Scholar 

  85. Ganesh, P.; Giri, R.; Kaul, R.; Ram Sankar, P.; Tiwari, P.; Atulkar, A., et al.: Studies on pitting corrosion and sensitization in laser rapid manufactured specimens of type 316L stainless steel. Mater. Des. 39, 509–521 (2012). https://doi.org/10.1016/j.matdes.2012.03.011

    Article  Google Scholar 

  86. Ziętala, M.; Durejko, T.; Polański, M.; Kunce, I.; Płociński, T.; Zieliński, W., et al.: The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater. Sci. Eng. A 677, 1–10 (2016). https://doi.org/10.1016/j.msea.2016.09.028

    Article  Google Scholar 

  87. Chen, X.; Li, J.; Cheng, X.; Wang, H.; Huang, Z.: Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater. Sci. Eng. A 715, 307–14 (2018). https://doi.org/10.1016/j.msea.2017.10.002

    Article  Google Scholar 

  88. Gill, T.P.S.; Shankar, V.; Pujar, M.G.; Rodriguez, P.: Effect of composition on the transformation of δ-ferrite TO σ in type 316 stainless steel weld metals. Scr. Metall. Mater. 32, 1595–600 (1995). https://doi.org/10.1016/0956-716X(95)00242-N

    Article  Google Scholar 

  89. Muto, I.; Ito, D.; Hara, N.: Microelectrochemical investigation on pit initiation at sulfide and oxide inclusions in type 304 stainless steel. J Electrochem. Soc. 156, C55 (2009). https://doi.org/10.1149/1.3033498

    Article  Google Scholar 

  90. Kong, D.; Ni, X.; Dong, C.; Zhang, L.; Man, C.; Yao, J., et al.: Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim. Acta 276, 293–303 (2018). https://doi.org/10.1016/j.electacta.2018.04.188

    Article  Google Scholar 

  91. Zhou, C.; Hu, S.; Shi, Q.; Tao, H.; Song, Y.; Zheng, J., et al.: Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing. Corros. Sci. 164, 108353 (2020). https://doi.org/10.1016/j.corsci.2019.108353

    Article  Google Scholar 

  92. Kong, D.; Dong, C.; Ni, X.; Zhang, L.; Yao, J.; Man, C., et al.: Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol. 35, 1499–507 (2019). https://doi.org/10.1016/j.jmst.2019.03.003

    Article  Google Scholar 

  93. Zhou, C.; Wang, J.; Hu, S.; Tao, H.; Fang, B.; Li, L., et al.: Enhanced corrosion resistance of additively manufactured 316L stainless steel after heat treatment. J. Electrochem. Soc. 167, 141504 (2020)

    Article  Google Scholar 

  94. Lou, X.; Song, M.; Emigh, P.W.; Othon, M.A.; Andresen, P.L.: On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing. Corros. Sci. 128, 140–153 (2017). https://doi.org/10.1016/j.corsci.2017.09.017

    Article  Google Scholar 

  95. Zhang, H.; Zhang, C.H.; Wang, Q.; Wu, C.L.; Zhang, S.; Chen, J., et al.: Effect of Ni content on stainless steel fabricated by laser melting deposition. Opt. Laser Technol. 101, 363–371 (2018)

    Article  Google Scholar 

  96. Sun, Y.; Moroz, A.; Alrbaey, K.: Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel. J. Mater. Eng. Perform. 23, 518–526 (2014). https://doi.org/10.1007/s11665-013-0784-8

    Article  Google Scholar 

  97. Sander, G.; Thomas, S.; Cruz, V.; Jurg, M.; Birbilis, N.; Gao, X., et al.: On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting. J. Electrochem. Soc. 164, C250–C257 (2017). https://doi.org/10.1149/2.0551706jes

    Article  Google Scholar 

  98. Kazemipour, M.; Mohammadi, M.; Mfoumou, E.; Nasiri, A.M.: Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: the impact of process-induced porosities. JOM 71, 3230–3240 (2019). https://doi.org/10.1007/s11837-019-03647-w

    Article  Google Scholar 

  99. Kale, A.B.; Kim, B.-K.; Kim, D.-I.; Castle, E.G.; Reece, M.; Choi, S.-H.: An investigation of the corrosion behavior of 316L stainless steel fabricated by SLM and SPS techniques. Mater. Charact. 163, 110204 (2020). https://doi.org/10.1016/j.matchar.2020.110204

    Article  Google Scholar 

  100. Stergioudi, F.; Vogiatzis, C.A.; Pavlidou, E.; Skolianos, S.; Michailidis, N.: Corrosion resistance of porous NiTi biomedical alloy in simulated body fluids. Smart Mater. Struct. 25, 95024 (2016). https://doi.org/10.1088/0964-1726/25/9/095024

    Article  Google Scholar 

  101. Chen, M.F.; Yang, X.J.; Hu, R.X.; Cui, Z.D.; Man, H.C.: Bioactive NiTi shape memory alloy used as bone bonding implants. Mater. Sci. Eng. C 24, 497–502 (2004)

    Article  Google Scholar 

  102. Duerig, T.W.; Pelton, A.; Stöckel, D.: An overview of nitinol medical applications. Mater. Sci. Eng. A 273, 149–160 (1999)

    Article  Google Scholar 

  103. Tucho, W.M.; Cuvillier, P.; Sjolyst-Kverneland, A.; Hansen, V.: Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater. Sci. Eng. A 689, 220–32 (2017). https://doi.org/10.1016/j.msea.2017.02.062

    Article  Google Scholar 

  104. Du, D.; Dong, A.; Shu, D.; Zhu, G.; Sun, B.; Li, X., et al.: Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 760, 469–80 (2019). https://doi.org/10.1016/j.msea.2019.05.013

    Article  Google Scholar 

  105. Li, J.; Zhao, Z.; Bai, P.; Qu, H.; Liu, B.; Li, L., et al.: Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments. J. Alloys Compd. 772, 861–870 (2019). https://doi.org/10.1016/j.jallcom.2018.09.200

    Article  Google Scholar 

  106. Chlebus, E.; Gruber, K.; Kuźnicka, B.; Kurzac, J.; Kurzynowski, T.; Yang, K.V., et al.: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 639, 647–55 (2015). https://doi.org/10.1016/j.msea.2015.05.035

    Article  Google Scholar 

  107. Marattukalam, J.J.; Singh, A.K.; Datta, S.; Das, M.; Balla, V.K.; Bontha, S., et al.: Microstructure and corrosion behavior of laser processed NiTi alloy. Mater. Sci. Eng. C 57, 309–13 (2015). https://doi.org/10.1016/j.msec.2015.07.067

    Article  Google Scholar 

  108. Figueira, N.; Silva, T.M.; Carmezim, M.J.; Fernandes, J.C.S.: Corrosion behaviour of NiTi alloy. Electrochim. Acta 54, 921–926 (2009)

    Article  Google Scholar 

  109. Ibrahim, H.; Jahadakbar, A.R.; Dehghan, A.; Moghaddam, N.S.; Amerinatanzi, A.; Elahinia, M.: In vitro corrosion assessment of additively manufactured porous NiTi structures for bone fixation applications. Metals (Basel) 8, 164 (2018). https://doi.org/10.3390/met8030164

    Article  Google Scholar 

  110. Luo, S.; Huang, W.; Yang, H.; Yang, J.; Wang, Z.; Zeng, X.: Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments. Addit. Manuf. 30, 100875 (2019). https://doi.org/10.1016/j.addma.2019.100875

    Article  Google Scholar 

  111. Jinlong, L.; Tongxiang, L.; Chen, W.: Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel. J. Solid State Chem. 240, 109–114 (2016)

    Article  Google Scholar 

  112. Osório, W.R.; Freire, C.M.; Garcia, A.: The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings. Mater. Sci. Eng. A 402, 22–32 (2005). https://doi.org/10.1016/j.msea.2005.02.094

    Article  Google Scholar 

  113. Li, H.; Feng, S.; Li, J.; Gong, J.: Effect of heat treatment on the δ phase distribution and corrosion resistance of selective laser melting manufactured Inconel 718 superalloy. Mater. Corros. 69, 1350–1354 (2018)

    Article  Google Scholar 

  114. Mythreyi, O.V.; Raja, A.; Nagesha, B.K.; Jayaganthan, R.: Corrosion study of selective laser melted IN718 alloy upon post heat treatment and shot peening. Metals (Basel) 10, 1562 (2020)

    Article  Google Scholar 

  115. Zhang, B.; Xiu, M.; Tan, Y.T.; Wei, J.; Wang, P.: Pitting corrosion of SLM Inconel 718 sample under surface and heat treatments. Appl. Surf. Sci. 490, 556–67 (2019). https://doi.org/10.1016/j.apsusc.2019.06.043

    Article  Google Scholar 

  116. Chen, T.; John, H.; Xu, J.; Lu, Q.; Hawk, J.; Liu, X.: Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 2: effect of aging treatment. Corros. Sci. 78, 151–61 (2014). https://doi.org/10.1016/j.corsci.2013.09.010

    Article  Google Scholar 

  117. Kang, Y.-J.; Yang, S.; Kim, Y.-K.; AlMangour, B.; Lee, K.-A.: Effect of post-treatment on the microstructure and high-temperature oxidation behaviour of additively manufactured inconel 718 alloy. Corros. Sci. 158, 108082 (2019). https://doi.org/10.1016/j.corsci.2019.06.030

    Article  Google Scholar 

  118. Wang, K.: The use of titanium for medical applications in the USA. Mater. Sci. Eng. A 213, 134–137 (1996). https://doi.org/10.1016/0921-5093(96)10243-4

    Article  Google Scholar 

  119. Andersen, O.Z.; Offermanns, V.; Sillassen, M.; Almtoft, K.P.; Andersen, I.H.; Sørensen, S., et al.: Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 34, 5883–90 (2013). https://doi.org/10.1016/j.biomaterials.2013.04.031

    Article  Google Scholar 

  120. Dai, N.; Zhang, L.C.; Zhang, J.; Chen, Q.; Wu, M.: Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros. Sci. 102, 484–489 (2016). https://doi.org/10.1016/j.corsci.2015.10.041

    Article  Google Scholar 

  121. Guo, S.; Lu, Y.; Wu, S.; Liu, L.; He, M.; Zhao, C., et al.: Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys. Mater. Sci. Eng. C 72, 631–40 (2017). https://doi.org/10.1016/j.msec.2016.11.126

    Article  Google Scholar 

  122. Chen, L.Y.; Huang, J.C.; Lin, C.H.; Pan, C.T.; Chen, S.Y.; Yang, T.L., et al.: Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting. Mater. Sci. Eng. A 682, 389–95 (2017). https://doi.org/10.1016/j.msea.2016.11.061

    Article  Google Scholar 

  123. Gong, X.; Cui, Y.; Wei, D.; Liu, B.; Liu, R.; Nie, Y., et al.: Building direction dependence of corrosion resistance property of Ti–6Al–4V alloy fabricated by electron beam melting. Corros. Sci. 127, 101–109 (2017). https://doi.org/10.1016/j.corsci.2017.08.008

    Article  Google Scholar 

  124. Chen, Y.; Zhang, J.; Dai, N.; Qin, P.; Attar, H.; Zhang, L.-C.: Corrosion behaviour of selective laser melted Ti-TiB biocomposite in simulated body fluid. Electrochim. Acta 232, 89–97 (2017). https://doi.org/10.1016/j.electacta.2017.02.112

    Article  Google Scholar 

  125. Welsch, G.; Boyer, R.; Collings, E.W.: Materials properties handbook: titanium alloys. ASM International, Netherlands (1993)

    Google Scholar 

  126. Craeghs, T.; Thijs, L.; Verhaeghe, F.; Kruth, J.-P.; Van, H.J.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58, 3303–3312 (2010). https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  127. Longhitano, G.A.; Larosa, M.A.; Jardini, A.L.; de Carvalho Zavaglia, C.A.; Ierardi, M.C.F.: Correlation between microstructures and mechanical properties under tensile and compression tests of heat-treated Ti-6Al–4 V ELI alloy produced by additive manufacturing for biomedical applications. J. Mater. Process. Technol. 252, 202–210 (2018)

    Article  Google Scholar 

  128. Longhitano, G.A.; Arenas, M.A.; Conde, A.; Larosa, M.A.; Jardini, A.L.; de Zavaglia, C.A.C., et al.: Heat treatments effects on functionalization and corrosion behavior of Ti-6Al-4V ELI alloy made by additive manufacturing. J. Alloys Compd. 765, 961–968 (2018). https://doi.org/10.1016/j.jallcom.2018.06.319

    Article  Google Scholar 

  129. Dai, N.; Zhang, L.-C.; Zhang, J.; Zhang, X.; Ni, Q.; Chen, Y., et al.: Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros. Sci. 111, 703–10 (2016). https://doi.org/10.1016/j.corsci.2016.06.009

    Article  Google Scholar 

  130. Carroll, B.E.; Palmer, T.A.; Beese, A.M.: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 87, 309–20 (2015). https://doi.org/10.1016/j.actamat.2014.12.054

    Article  Google Scholar 

  131. Nicoletto, G.: Anisotropic high cycle fatigue behavior of Ti–6Al–4V obtained by powder bed laser fusion. Int. J. Fatigue 94, 255–262 (2017). https://doi.org/10.1016/j.ijfatigue.2016.04.032

    Article  Google Scholar 

  132. Chandramohan, P.; Bhero, S.; Obadele, B.A.; Olubambi, P.A.: Laser additive manufactured Ti–6Al–4V alloy: tribology and corrosion studies. Int. J. Adv. Manuf. Technol. 92, 3051–3061 (2017). https://doi.org/10.1007/s00170-017-0410-2

    Article  Google Scholar 

  133. Bai, Y.; Gai, X.; Li, S.; Zhang, L.-C.; Liu, Y.; Hao, Y., et al.: Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline. Corros. Sci. 123, 289–96 (2017). https://doi.org/10.1016/j.corsci.2017.05.003

    Article  Google Scholar 

  134. Cvijović-Alagić, I.; Cvijović, Z.; Bajat, J.; Rakin, M.: Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys. Corros. Sci. 83, 245–254 (2014)

    Article  Google Scholar 

  135. Geetha, M.; Kamachi Mudali, U.; Gogia, A.K.; Asokamani, R.; Raj, B.: Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros. Sci. 46, 877–92 (2004). https://doi.org/10.1016/S0010-938X(03)00186-0

    Article  Google Scholar 

  136. Chen, J.-R.; Tsai, W.-T.: In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM. Electrochim. Acta 56, 1746–51 (2011). https://doi.org/10.1016/j.electacta.2010.10.024

    Article  Google Scholar 

  137. Palumbo, G.; Erb, U.: Enhancing the operating life and performance of lead-acid batteries via grain-boundary engineering. MRS Bull. 24, 27–32 (1999)

    Article  Google Scholar 

  138. Pazhanivel, B.; Sathiya, P.; Sozhan, G.: Ultra-fine bimodal (α + β) microstructure induced mechanical strength and corrosion resistance of Ti-6Al-4V alloy produced via laser powder bed fusion process. Opt. Laser Technol. 125, 1060 (2020). https://doi.org/10.1016/j.optlastec.2019.106017

    Article  Google Scholar 

  139. Balyanov, A.; Kutnyakova, J.; Amirkhanova, N.A.; Stolyarov, V.V.; Valiev, R.Z.; Liao, X.Z., et al.: Corrosion resistance of ultra fine-grained Ti. Scr. Mater. 51, 225–9 (2004). https://doi.org/10.1016/j.scriptamat.2004.04.011

    Article  Google Scholar 

  140. Wei, D.-X.; Koizumi, Y.; Li, Y.; Yamanak, K.; Chiba, A.: Submicron lamellar porous structure formed by selective dissolution of Ti-Al alloy. Mater. Des. 98, 1–11 (2016). https://doi.org/10.1016/j.matdes.2016.02.096

    Article  Google Scholar 

  141. Xu, Y.; Lu, Y.; Sundberg, K.L.; Liang, J.; Sisson, R.D.: Effect of annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V. J. Mater. Eng. Perform. 26, 2572–2582 (2017). https://doi.org/10.1007/s11665-017-2710-y

    Article  Google Scholar 

  142. Yang, J.; Yang, H.; Yu, H.; Wang, Z.; Zeng, X.: Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution. Metall. Mater. Trans. A 48, 3583–3593 (2017). https://doi.org/10.1007/s11661-017-4087-9

    Article  Google Scholar 

  143. Longhitano, G.A.; Larosa, M.A.; Munhoz, A.L.J.; de Zavaglia, C.A.C.; Ierardi, M.C.F.: Surface finishes for Ti-6Al-4V alloy produced by direct metal laser sintering. Mater. Res. 18, 838–842 (2015)

    Article  Google Scholar 

  144. Jones, D.A.: Principles and prevention of corrosion. Prentice Hall, Inc., Up Saddle River, New Jersey (1996)

    Google Scholar 

  145. de Damborenea, J.J.; Arenas, M.A.; Larosa, M.A.; Jardini, A.L.; de Carvalho Zavaglia, C.A.; Conde, A.: Corrosion of Ti6Al4V pins produced by direct metal laser sintering. Appl. Surf. Sci. 393, 340–347 (2017). https://doi.org/10.1016/j.apsusc.2016.10.031

    Article  Google Scholar 

  146. Chiu, T.-M.M.; Mahmoudi, M.; Dai, W.; Elwany, A.; Liang, H.; Castaneda, H.: Corrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturing. Electrochim. Acta 279, 143–151 (2018). https://doi.org/10.1016/j.electacta.2018.04.189

    Article  Google Scholar 

  147. Martin, É.; Azzi, M.; Salishchev, G.A.; Szpunar, J.: Influence of microstructure and texture on the corrosion and tribocorrosion behavior of Ti–6Al–4V. Tribol. Int. 43, 918–24 (2010). https://doi.org/10.1016/j.triboint.2009.12.055

    Article  Google Scholar 

  148. Zhang, C.; Song, W.; Li, F.; Zhao, X.; Wang, Y.; Xiao, G.: Microstructure and corrosion properties of Ti-6Al-4V alloy by ultrasonic shot peening. Int. J. Electrochem. Sci. 10, 9167–9178 (2015)

    Google Scholar 

  149. Jin, L.; Cui, W.; Song, X.; Liu, G.; Zhou, L.: Effects of surface nanocrystallization on corrosion resistance of β-type titanium alloy. Trans. Nonferrous Met. Soc. China 24, 2529–35 (2014). https://doi.org/10.1016/S1003-6326(14)63379-3

    Article  Google Scholar 

  150. Jiang, X.P.; Wang, X.Y.; Li, J.X.; Li, D.Y.; Man, C.-S.; Shepard, M.J., et al.: Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Mater. Sci. Eng. A 429, 30–5 (2006). https://doi.org/10.1016/j.msea.2006.04.024

    Article  Google Scholar 

  151. Jelliti, S.; Richard, C.; Retraint, D.; Roland, T.; Chemkhi, M.; Demangel, C.: Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surf. Coat. Technol. 224, 82–7 (2013). https://doi.org/10.1016/j.surfcoat.2013.02.052

    Article  Google Scholar 

  152. Zhang, Q.; Duan, B.; Zhang, Z.; Wang, J.; Si, C.: Effect of ultrasonic shot peening on microstructure evolution and corrosion resistance of selective laser melted Ti–6Al–4V alloy. J. Mater. Res. Technol. 11, 1090–1099 (2021). https://doi.org/10.1016/j.jmrt.2021.01.091

    Article  Google Scholar 

  153. Abdeen, D.H.; Palmer, B.R.: Corrosion evaluation of Ti-6Al-4V parts produced with electron beam melting machine. Rapid Prototyp. J. 22, 322–329 (2016). https://doi.org/10.1108/RPJ-09-2014-0104

    Article  Google Scholar 

  154. Neville, A.; Xu, J.: An assessment of the instability of Ti and its alloys in acidic environments at elevated temperature. J. Light Met. 1, 119–126 (2001)

    Article  Google Scholar 

  155. Moayed, M.H.; Laycock, N.J.; Newman, R.C.: Dependence of the critical pitting temperature on surface roughness. Corros. Sci. 45, 1203–16 (2003). https://doi.org/10.1016/S0010-938X(02)00215-9

    Article  Google Scholar 

  156. Aldahash, S.A.; Abdelaal, O.; Abdelrhman, Y.: Slurry erosion-corrosion characteristics of as-built Ti-6Al-4V manufactured by selective laser melting. Materials (Basel) 13, 3967 (2020)

    Article  Google Scholar 

  157. Schutz RW, Thomas DE. Corrosion of titanium and titanium alloys. In: ASM Handbook. ASM International Publication 2005;13:252–99

  158. Gurrappa, I.: Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater. Charact. 51, 131–139 (2003)

    Article  Google Scholar 

  159. Abdulmageed, M.H.; Ibrahim, S.I.: Corrosion behavior of Ti-6Al-4V alloy in different media. Al-Khwarizmi Eng. J. 6, 77–84 (2010)

    Google Scholar 

  160. Chastand, V.; Quaegebeur, P.; Maia, W.; Charkaluk, E.: Comparative study of fatigue properties of Ti-6Al-4V specimens built by electron beam melting (EBM) and selective laser melting (SLM). Mater Charact 143, 76–81 (2018). https://doi.org/10.1016/j.matchar.2018.03.028

    Article  Google Scholar 

  161. Wang, H.; Zhao, B.; Liu, C.; Wang, C.; Tan, X.; Hu, M.: A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting. PLoS One 11, e0158513 (2016)

    Article  Google Scholar 

  162. Zhang, W.; Qin, P.; Wang, Z.; Yang, C.; Kollo, L.; Grzesiak, D., et al.: Superior wear resistance in EBM-processed TC4 alloy compared with SLM and forged samples. Materials (Basel) 12, 782 (2019). https://doi.org/10.3390/ma12050782

    Article  Google Scholar 

  163. Cabrini, M.; Calignano, F.; Fino, P.; Lorenzi, S.; Lorusso, M.; Manfredi, D., et al.: Corrosion behavior of heat-treated AlSi10Mg manufactured by laser powder bed fusion. Materials (Basel) (2018). https://doi.org/10.3390/ma11071051

    Article  Google Scholar 

  164. Leon, A.; Shirizly, A.; Aghion, E.: Corrosion behavior of AlSi10Mg alloy produced by additive manufacturing (AM) vs. its counterpart gravity cast alloy. Metals (Basel) 6, 148 (2016). https://doi.org/10.3390/met6070148

    Article  Google Scholar 

  165. Kempen, K.; Thijs, L.; Van Humbeeck, J.; Kruth, J.-P.P.: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia 39, 439–46 (2012). https://doi.org/10.1016/j.phpro.2012.10.059

    Article  Google Scholar 

  166. Girelli, L.; Tocci, M.; Gelfi, M.; Pola, A.: Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater. Sci. Eng. A 739, 317–328 (2019). https://doi.org/10.1016/j.msea.2018.10.026

    Article  Google Scholar 

  167. Aboulkhair, N.T.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N.M.: The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A 667, 139–146 (2016). https://doi.org/10.1016/j.msea.2016.04.092

    Article  Google Scholar 

  168. L. N, Zhou X, Birbilis N, Hughes AE, C. Mol JM, J. S, et al. Durability and corrosion of aluminium and its alloys: overview, property space, techniques and developments. alum alloy - new trends fabrication and applications 2012. Doi: https://doi.org/10.5772/53752

  169. Revilla, R.I.; Liang, J.; Godet, S.; De Graeve, I.: Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM. J. Electrochem. Soc. 164, C27 (2016)

    Article  Google Scholar 

  170. Leon, A.; Aghion, E.: Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser melting (SLM). Mater. Charact. 131, 188–194 (2017). https://doi.org/10.1016/j.matchar.2017.06.029

    Article  Google Scholar 

  171. Rubben, T.; Revilla, R.I.; De, G.I.: Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg. Corros. Sci. 147, 406–415 (2019). https://doi.org/10.1016/j.corsci.2018.11.038

    Article  Google Scholar 

  172. Girelli, L.; Tocci, M.; Conte, M.; Giovanardi, R.; Veronesi, P.; Gelfi, M., et al.: Effect of the T6 heat treatment on corrosion behavior of additive manufactured and gravity cast AlSi10Mg alloy. Mater. Corros. 70, 1808–16 (2019). https://doi.org/10.1002/maco.201910890

    Article  Google Scholar 

  173. Gharbi, O.; Jiang, D.; Feenstra, D.R.; Kairy, S.K.; Wu, Y.; Hutchinson, C.R., et al.: On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting. Corros. Sci. 143, 93–106 (2018). https://doi.org/10.1016/j.corsci.2018.08.019

    Article  Google Scholar 

  174. Prashanth, K.G.G.; Debalina, B.; Wang, Z.; Gostin, P.F.F.; Gebert, A.; Calin, M., et al.: Tribological and corrosion properties of Al–12Si produced by selective laser melting. J. Mater. Res. 29, 2044–2054 (2014). https://doi.org/10.1557/jmr.2014.133

    Article  Google Scholar 

  175. Cabrini, M.; Lorenzi, S.; Pastore, T.; Pellegrini, S.; Ambrosio, E.P.; Calignano, F., et al.: Effect of heat treatment on corrosion resistance of DMLS AlSi10Mg alloy. Electrochim. Acta 206, 346–355 (2016). https://doi.org/10.1016/j.electacta.2016.04.157

    Article  Google Scholar 

  176. Fathi, P.; Rafieazad, M.; Duan, X.; Mohammadi, M.; Nasiri, A.M.: On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering. Corros Sci 157, 126–45 (2019). https://doi.org/10.1016/j.corsci.2019.05.032

    Article  Google Scholar 

  177. Rafieazad, M.; Fathi, P.; Mohammadi, M.; Nasiri, A.: Effects of laser-powder bed fusion process parameters on the microstructure and corrosion properties of AlSi10Mg alloy. J. Electrochem. Soc. 168(2), 021505 (2021)

    Article  Google Scholar 

  178. Chiu, T.M.; Zhang, C.; Zhao, D.; Yadav, D.; Xie, K.Y.; Elwany, A., et al.: Interface stability of laser powder-bed-fused AlSi12 under simulated atmospheric conditions. Corros. Sci. 175, 108861 (2020). https://doi.org/10.1016/j.corsci.2020.108861

    Article  Google Scholar 

  179. Chen, Y.; Zhang, J.; Gu, X.; Dai, N.; Qin, P.; Zhang, L.-C.: Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes. J. Alloys Compd. 747, 648–58 (2018). https://doi.org/10.1016/j.jallcom.2018.03.062

    Article  Google Scholar 

  180. Cabrini, M.; Lorenzi, S.; Pastore, T.; Pellegrini, S.; Manfredi, D.; Fino, P., et al.: Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering. J. Mater. Process Technol. 231, 326–335 (2016). https://doi.org/10.1016/j.jmatprotec.2015.12.033

    Article  Google Scholar 

  181. Cabrini, M.; Lorenzi, S.; Testa, C.; Pastore, T.; Manfredi, D.; Lorusso, M.: Statistical approach for electrochemical evaluation of the effect of heat treatments on the corrosion resistance of AlSi10Mg alloy by laser powder bed fusion. Electrochim. Acta 305, 459–466 (2019). https://doi.org/10.1016/j.electacta.2019.03.103

    Article  Google Scholar 

  182. Girelli, L.; Giovagnoli, M.; Tocci, M.; Pola, A.; Fortini, A.; Merlin, M., et al.: Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing. Mater. Sci. Eng. A 748, 38–51 (2019). https://doi.org/10.1016/j.msea.2019.01.078

    Article  Google Scholar 

  183. Gu, X.-H.; Zhang, J.-X.; Fan, X.-L.; Zhang, L.-C.: Corrosion behavior of selective laser melted AlSi10Mg alloy in NaCl solution and its dependence on heat treatment. Acta Metall. Sin. English Lett. 33, 327–37 (2020). https://doi.org/10.1007/s40195-019-00903-5

    Article  Google Scholar 

  184. Özer, G.; Tarakçi, G.; Yilmaz, M.S.; Öter, Z.; Sürmen, Ö.; Akça, Y., et al.: Investigation of the effects of different heat treatment parameters on the corrosion and mechanical properties of the AlSi10Mg alloy produced with direct metal laser sintering. Mater. Corros. 71, 365–373 (2020). https://doi.org/10.1002/maco.201911171

    Article  Google Scholar 

  185. Torbati-Sarraf, H.; Torbati-Sarraf, S.A.; Chawla, N.; Poursaee, A.: A comparative study of corrosion behavior of an additively manufactured Al-6061 RAM2 with extruded Al-6061 T6. Corros. Sci. 174, 108838 (2020). https://doi.org/10.1016/j.corsci.2020.108838

    Article  Google Scholar 

  186. Alifui-Segbaya, F.; Lewis, J.; Eggbeer, D.; Williams, R.J.: In vitro corrosion analyses of heat treated cobalt-chromium alloys manufactured by direct metal laser sintering. Rapid Prototyp. J. 21(1), 111–116 (2015)

    Article  Google Scholar 

  187. Yoda, K.; Takaichi, A.; Nomura, N.; Tsutsumi, Y.; Doi, H.; Kurosu, S., et al.: Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co–Cr–Mo alloys for dental applications. Acta Biomater. 8, 2856–2862 (2012)

    Article  Google Scholar 

  188. Guoqing, Z.; Yongqiang, Y.; Changhui, S.; Fan, F.; Zimian, Z.: Study on biocompatibility of CoCrMo alloy parts manufactured by selective laser melting. J. Med. Biol. Eng. 38, 76–86 (2018). https://doi.org/10.1007/s40846-017-0293-6

    Article  Google Scholar 

  189. Hedberg, Y.S.; Qian, B.; Shen, Z.; Virtanen, S.; Odnevall, W.I.: In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting. Dent. Mater. 30, 525–34 (2014). https://doi.org/10.1016/j.dental.2014.02.008

    Article  Google Scholar 

  190. Yfantis, C.; Yfantis, D.; Anastassopoulou, J.; Theophanides, T.: Analytical and electrochemical evaluation of the in vitro corrosion behavior of nickel-chrome and cobalt-chrome casting alloys for metal-ceramic restorations. Eur. J. Prosthodont. Restor. Dent. 15, 33 (2007)

    Google Scholar 

  191. Alifui-Segbaya, F.; Foley, P.; Williams, R.J.: The corrosive effects of artificial saliva on cast and rapid manufacture-produced cobalt chromium alloys. Rapid Prototyp. J. 19(2), 95–99 (2013)

    Article  Google Scholar 

  192. Lu, Y.; Wu, S.; Gan, Y.; Li, J.; Zhao, C.; Zhuo, D., et al.: Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Mater. Sci. Eng. C 49, 517–25 (2015). https://doi.org/10.1016/j.msec.2015.01.023

    Article  Google Scholar 

  193. Xin, X.Z.; Xiang, N.; Chen, J.; Wei, B.: In vitro biocompatibility of Co–Cr alloy fabricated by selective laser melting or traditional casting techniques. Mater. Lett. 88, 101–3 (2012). https://doi.org/10.1016/j.matlet.2012.08.032

    Article  Google Scholar 

  194. Yamanaka, K.; Mori, M.; Chiba, A.: Influence of carbon addition on mechanical properties and microstructures of Ni-free Co–Cr–W alloys subjected to thermomechanical processing. J. Mech. Behav. Biomed. Mater. 37, 274–85 (2014). https://doi.org/10.1016/j.jmbbm.2014.05.025

    Article  Google Scholar 

  195. Vandenbroucke, B.; Kruth, J.P.J.: Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 13, 196–203 (2007)

    Article  Google Scholar 

  196. Xin, X.-Z.; Chen, J.; Xiang, N.; Gong, Y.; Wei, B.: Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing. Dent. Mater. 30, 263–70 (2014). https://doi.org/10.1016/j.dental.2013.11.013

    Article  Google Scholar 

  197. Ameer, M.A.; Khamis, E.; Al-Motlaq, M.: Electrochemical behaviour of recasting Ni–Cr and Co–Cr non-precious dental alloys. Corros. Sci. 46, 2825–36 (2004). https://doi.org/10.1016/j.corsci.2004.03.011

    Article  Google Scholar 

  198. Hanawa, T.; Hiromoto, S.; Asami, K.: Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS. Appl. Surf. Sci. 183, 68–75 (2001). https://doi.org/10.1016/S0169-4332(01)00551-7

    Article  Google Scholar 

  199. Qiu, J.; Yu, W.; Zhang, F.: Effects of the porcelain-fused-to-metal firing process on the surface and corrosion of two Co–Cr dental alloys. J. Mater. Sci. 46, 1359–1368 (2011)

    Article  Google Scholar 

  200. Wang, W.J.J.; Yung, K.C.C.; Choy, H.S.S.; Xiao, T.Y.Y.; Cai, Z.X.X.: Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys. Appl. Surf. Sci. 443, 167–75 (2018). https://doi.org/10.1016/j.apsusc.2018.02.246

    Article  Google Scholar 

  201. Niu, P.D.; Li, R.D.; Yuan, T.C.; Zhu, S.Y.; Chen, C.; Wang, M.B., et al.: Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting. Intermetallics 104, 24–32 (2019). https://doi.org/10.1016/j.intermet.2018.10.018

    Article  Google Scholar 

  202. Shi, Y.; Yang, B.; Liaw, P.K.: Corrosion-resistant high-entropy alloys: a review. Metals (Basel) 7, 43 (2017)

    Article  Google Scholar 

  203. Qiu, X.; Wu, M.; Liu, C.; Zhang, Y.; Huang, C.: Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids. J. Alloys Compd. 708, 353–7 (2017). https://doi.org/10.1016/j.jallcom.2017.03.054

    Article  Google Scholar 

  204. Qiu, X.; Huang, C.; Wu, M.; Liu, C.; Zhang, Y.: Structure and properties of AlCrFeNiCuTi six principal elements equimolar alloy. J. Alloys Compd. 658, 1–5 (2016). https://doi.org/10.1016/j.jallcom.2015.10.224

    Article  Google Scholar 

  205. Xiao, D.H.; Zhou, P.F.; Wu, W.Q.; Diao, H.Y.; Gao, M.C.; Song, M., et al.: Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr, Ti) high entropy alloys. Mater. Des. 116, 438–47 (2017). https://doi.org/10.1016/j.matdes.2016.12.036

    Article  Google Scholar 

  206. Wu, C.L.; Zhang, S.; Zhang, C.H.; Zhang, H.; Dong, S.Y.: Phase evolution and properties in laser surface alloying of FeCoCrAlCuNix high-entropy alloy on copper substrate. Surf. Coat. Technol. 315, 368–76 (2017). https://doi.org/10.1016/j.surfcoat.2017.02.068

    Article  Google Scholar 

  207. Soare, V.; Mitrica, D.; Constantin, I.; Badilita, V.; Stoiciu, F.; Popescu, A.-M., et al.: Influence of remelting on microstructure, hardness and corrosion behaviour of AlCoCrFeNiTi high entropy alloy. Mater. Sci. Technol. 31, 1194–1200 (2015)

    Article  Google Scholar 

  208. Chen, Y.Y.; Duval, T.; Hung, U.D.; Yeh, J.W.; Shih, H.C.: Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corros. Sci. 47, 2257–79 (2005). https://doi.org/10.1016/j.corsci.2004.11.008

    Article  Google Scholar 

  209. Fujieda, T.; Chen, M.; Shiratori, H.; Kuwabara, K.; Yamanaka, K.; Koizumi, Y., et al.: Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting. Addit. Manuf. 25, 412–420 (2019). https://doi.org/10.1016/j.addma.2018.10.023

    Article  Google Scholar 

  210. Fujieda, T.; Shiratori, H.; Kuwabara, K.; Hirota, M.; Kato, T.; Yamanaka, K., et al.: CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater. Lett. 189, 148–51 (2017). https://doi.org/10.1016/j.matlet.2016.11.026

    Article  Google Scholar 

  211. Thapliyal, S.; Nene, S.S.; Agrawal, P.; Wang, T.; Morphew, C.; Mishra, R.S., et al.: Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing. Addit. Manuf. 36, 101455 (2020). https://doi.org/10.1016/j.addma.2020.101455

    Article  Google Scholar 

  212. Wang, R.; Zhang, K.; Davies, C.; Wu, X.: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971–81 (2017). https://doi.org/10.1016/j.jallcom.2016.10.138

    Article  Google Scholar 

  213. Wan, H.; Song, D.; Shi, X.; Cai, Y.; Li, T.; Chen, C.: Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment. J. Mater. Sci. Technol. 60, 197–205 (2021). https://doi.org/10.1016/j.jmst.2020.07.001

    Article  Google Scholar 

  214. Melia, M.A.; Carroll, J.D.; Whetten, S.R.; Esmaeely, S.N.; Locke, J.; White, E., et al.: Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy. Addit. Manuf. 29, 100833 (2019). https://doi.org/10.1016/j.addma.2019.100833

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Özer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.M., Özer, G., Yilmaz, M.S. et al. Corrosion of Additively Manufactured Metallic Components: A Review. Arab J Sci Eng 47, 5465–5490 (2022). https://doi.org/10.1007/s13369-021-06481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06481-y

Keywords

Navigation