Skip to main content
Log in

Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Certain commercial entities, equipment, or materials may be identified in this document to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

References

  1. C.R. Clayton and I. Olefiord, Corrosion Mechanisms in Theory and Practice, ed. P. Marcus and J. Oudar (New York: Marcel Dekker, 1995), p. 175.

    Google Scholar 

  2. A.J. Sedriks, Corrosion of Stainless Steels (New York: Wiley, 1996).

    Google Scholar 

  3. Anon, 17-4 PH Stainless Steel Product Data Bulletin (AK Steel Corporation, 2007), www.aksteel.com. Accessed 16 September 2016.

  4. Anon, Technical Datasheet CarTech Stainless 17Cr-4Ni (Carpenter Technology Corp., 2000), www.cartech.com. Accessed 16 September 2016.

  5. T. Keller, S. Ghosh, G. Lindwall, L. Ma, F. Zhang, U. Kattner, E. Lass, Y. Idell, M. Williams, J. Guyer, C. Campbell, and L. Levine, Acta Mater. (in press).

  6. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Revs. 61, 315 (2016).

    Article  Google Scholar 

  7. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta Mater. 117, 371 (2016).

    Article  Google Scholar 

  8. S. Cheruvathur, E.A. Lass, and C.E. Campbell, JOM 68, 930 (2016).

    Article  Google Scholar 

  9. G. Krauss, Steels-Processing, Structure and Performance (Metals Park, OH: ASM International, 2005), p. 613.

    Google Scholar 

  10. Anon, 2015 Annual Book of ASTM Standards, Volume 10.04: Electronics; Declarable Substances in Materials; 3D Imaging Systems (Philadelphia, PA: ASTM, 2013).

  11. G.F. VanderVoort, Metallography Principles and Practice (ASM International: Materials Park, OH, 1999).

    Google Scholar 

  12. W.F. Smith, Structure and Properties of Engineering Alloys (New York: McGraw-Hill, 1981).

    Google Scholar 

  13. E.A. Lass and M.R. Stoudt, unpublished research, 2016.

  14. Thermo-Calc, version: 2015b (Thermo-Calc Software AB, Stockholm, Sweden, 2015).

  15. TCFE8 Fe-Based Alloy Database, version: 8 (Themo-Calc Software AB, Stockholm, Sweden, 2014).

  16. F.S. Biancaniello, R.D. Jiggetts, M.R. Stoudt, R.E. Ricker, and S.D. Ridder, 2002 Advances in Powder Metallurgy & Particulate Materials, ed. V. Arnhold, C.-L. Chu, W. Jandesha, and H. Sanderow (Princeton, NJ: Metal Powder Industries Federation, 2002), p. 198.

    Google Scholar 

  17. F.S. Biancaniello, R.D. Jiggetts, R.E. Ricker, and S.D. Ridder, Adv. Sci. Technol. 28, 103 (1999).

    Google Scholar 

  18. F.S. Biancaniello, R.D. Jiggetts, R.E. Ricker, S.D. Ridder, and M.R. Stoudt, Introduction.Liquid Metal Atomizations: Fundementals and Practice, ed. K.P. Cooper, I.E. Anderson, S.D. Ridder, and F.S. Biancaniello (Nashville, TN: TMS, 2000), p. 263.

    Google Scholar 

  19. G.M. Janowski, F.S. Biancaniello, and S.D. Ridder, Metall. Trans. A 23, 3263 (1992).

    Google Scholar 

  20. R.E. Ricker, M.R. Stoudt, J.L Fink, F.S. Biancaniello, and S.D. Ridder, unpublished research, 2000.

  21. B.N. Taylor and C.E. Kuyatt, NIST Technical Note 1297-1994 Edition, NIST, 1994.

  22. Anon, The LOESS Regression Method (NIST, 2012), http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm. Accessed 16 September 2016.

  23. Anon, Local Regression (Wikipedia, The Free Encyclopedia, 2016), https://en.wikipedia.org/w/index.php?title=Local_regression&oldid=738699568|. Accessed 16 September 2016.

  24. P.E. Manning, D.J. Duquette, and W.F. Savage, Corrosion 36, 313 (1980).

    Article  Google Scholar 

  25. W.R. Cieslak, R.E. Semarge, and F.S. Bovard, Microbeam Analysis—1986, ed. A.D. Romig and W.F. Chambers (San Francisco, CA: San Francisco Press, 1986), p. 303.

    Google Scholar 

  26. W.R. Cieslak and D.J. Duquette, J. Electrochem. Soc. 132, 533 (1985).

    Article  Google Scholar 

  27. D.A. Jones, Principles and Prevention of Corrosion (New York: Macmillan, 1992).

    Google Scholar 

  28. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Shumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall, J. Phys. Chem. Ref. Data 11, 1 (1982).

    Article  Google Scholar 

  29. G. Inzelt, A. Lewenstam, and F. Scholz, Handbook of Reference Electrodes (Heidelberg: Springer, 2013).

    Book  Google Scholar 

  30. G.S. Frankel, L. Stockert, F. Hunkeler, and H. Boehni, Corrosion 43, 429 (1987).

    Article  Google Scholar 

  31. P.E. Manning, C.E. Lyman, and D.J. Duquette, Corrosion 36, 246 (1980).

    Article  Google Scholar 

  32. S. Hamano, T. Shimizu, and T. Noda, 5th International Conference on Processing and Manufacturing of Advanced Materials, ed. T. Chandra, K. Tsuzaki, and M. Militzer (Vancouver, Canada: Trans Tech Publications Ltd., 2006), pp. 4975–4980.

  33. H. Ha, T. Lee, and S. Kim, Electrochim. Acta 80, 432 (2012).

    Article  Google Scholar 

  34. C.A. Olsson, Corros. Sci. 37, 467 (1995).

    Article  Google Scholar 

  35. H. Baba and Y. Katada, Corros. Sci. 48, 2510 (2006).

    Article  Google Scholar 

  36. I. Olefjord and L. Wegrelius, Corros. Sci. 38, 1203 (1996).

    Article  Google Scholar 

  37. G.A. Fernandez and H. Du, Z. Metallkd. 85, 154 (1994).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Gregor Jacob and Dr. Chris Brown of the NIST Engineering Laboratory for supplying the AM material used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Stoudt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoudt, M.R., Ricker, R.E., Lass, E.A. et al. Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel. JOM 69, 506–515 (2017). https://doi.org/10.1007/s11837-016-2237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2237-y

Keywords

Navigation