Skip to main content

Advertisement

Log in

Flow-Driven Piezoelectric Energy Harvester on a Full-Span Wing for Micro-aerial-vehicle (MAV) Application

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The major challenge in fixed-wing micro-aerial vehicles (MAV) is their low flight endurance due to energy limitations. A solution might be the design of a piezoelectric harvester to scavenge energy directly from the fluid flow past the MAV. Cantilever beams with a piezoelectric layer undergoing vortex-induced vibrations can convert the mechanical energy available from the ambient environment to usable electrical power. Since a flow-driven piezoelectric composite beam involves three-way coupling between the turbulent fluid flow, the electrical circuit and the structural behavior of the beam, the complexities in modeling and simulation increase sharply. In this work, an efficient three-way coupling algorithm, which links aerodynamics, electrical and mechanical fields has been developed. Aiming to validate the proposed algorithm, a case study was considered, and present numerical simulations were compared with available experimental data. The methodology was applied to an infinite wing and different installation configurations of the harvester were tested at the trailing edge region of the wing. The results have shown that a harvester mounted over the wing surface extracts more energy from the wake, leading to larger oscillation amplitudes and higher power output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xiang, J.; Wu, Y.; Li, D.: Energy harvesting from the discrete gust response of a piezoaeroelastic wing: modeling and performance evaluation. J. Sound Vib. 343, 176–193 (2015). https://doi.org/10.1016/J.JSV.2014.12.023

    Article  Google Scholar 

  2. Tam Nguyen, H.-D.; Pham, H.-T.; Wang, D.-A.: A miniature pneumatic energy generator using Kármán vortex street. J. Wind Eng. Ind. Aerodyn. 116, 40–48 (2013). https://doi.org/10.1016/J.JWEIA.2013.03.002

    Article  Google Scholar 

  3. Li, D.; Wu, Y.; Da Ronch, A.; Xiang, J.: Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Prog. Aerosp. Sci. 86, 28–62 (2016). https://doi.org/10.1016/J.PAEROSCI.2016.08.001

    Article  Google Scholar 

  4. Chandrasekhar, A.; Vivekananthan, V.; Khandelwal, G.; Kim, S.J.: A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code. Nano Energy 60, 850–856 (2019). https://doi.org/10.1016/j.nanoen.2019.04.004

    Article  Google Scholar 

  5. Vivekananthan, V.; Chandrasekhar, A.; Alluri, N.R.; Purusothaman, Y.; Joong Kim, W.; Kang, C.N.; Kim, S.J.: A flexible piezoelectric composite nanogenerator based on doping enhanced lead-free nanoparticles. Mater. Lett. 249, 73–76 (2019). https://doi.org/10.1016/j.matlet.2019.02.134

    Article  Google Scholar 

  6. Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L.: Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833–2838 (2012). https://doi.org/10.1021/nl3003039

    Article  Google Scholar 

  7. Wang, Z.; Yu, R.; Pan, C.; Li, Z.; Yang, J.; Yi, F.; Wang, Z.L.: Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 6, 8401 (2015). https://doi.org/10.1038/ncomms9401

    Article  Google Scholar 

  8. Vivekananthan, V.; Alluri, N.R.; Purusothaman, Y.; Chandrasekhar, A.; Kim, S.J.: A flexible, planar energy harvesting device for scavenging road side waste mechanical energy: via the synergistic piezoelectric response of K0.5Na0.5NbO3-BaTiO3/PVDF composite films. Nanoscale 9, 15122–15130 (2017). https://doi.org/10.1039/c7nr04115b

    Article  Google Scholar 

  9. Purusothaman, Y.; Alluri, N.R.; Chandrasekhar, A.; Vivekananthan, V.; Kim, S.J.: Direct in situ hybridized interfacial quantification to stimulate highly flexile self-powered photodetector. J. Phys. Chem. C 122, 12177–12184 (2018). https://doi.org/10.1021/acs.jpcc.8b02604

    Article  Google Scholar 

  10. Chandrasekhar, A.; Khandelwal, G.; Alluri, N.R.; Vivekananthan, V.; Kim, S.J.: Battery-free electronic smart toys: a step toward the commercialization of sustainable triboelectric nanogenerators. ACS Sustain. Chem. Eng. 6, 6110–6116 (2018). https://doi.org/10.1021/acssuschemeng.7b04769

    Article  Google Scholar 

  11. Chandrasekhar, A.; Alluri, N.R.; Vivekananthan, V.; Park, J.H.; Kim, S.J.: Sustainable biomechanical energy scavenger toward self-reliant kids’ interactive battery-free smart puzzle. ACS Sustain. Chem. Eng. 5, 7310–7316 (2017). https://doi.org/10.1021/acssuschemeng.7b01561

    Article  Google Scholar 

  12. Alluri, N.R.; Chandrasekhar, A.; Kim, S.J.: Exalted electric output via piezoelectric-triboelectric coupling/sustainable butterfly wing structure type multiunit hybrid nanogenerator. ACS Sustain. Chem. Eng. 6, 1919–1933 (2018). https://doi.org/10.1021/acssuschemeng.7b03337

    Article  Google Scholar 

  13. Toprak, A.; Tigli, O.: Piezoelectric energy harvesting: state-of-the-art and challenges. Appl. Phys. Rev. 1, 031104 (2014). https://doi.org/10.1063/1.4896166

    Article  Google Scholar 

  14. Roundy, S.; Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1142 (2004)

    Article  Google Scholar 

  15. Esmaeili, A.; Sousa, J.M.M.: Power density ratio optimization of bimorph piezocomposite energy harvesters using a multidisciplinary design feasible method. Compos. Struct. 165, 171–179 (2017). https://doi.org/10.1016/J.COMPSTRUCT.2017.01.031

    Article  Google Scholar 

  16. Chabart, O.; Lilien, J.: Galloping of electrical lines in wind tunnel facilities. J. Wind Eng. Ind. Aerodyn. 74–76, 967–976 (1998). https://doi.org/10.1016/S0167-6105(98)00088-9

    Article  Google Scholar 

  17. Alonso, G.; Meseguer, J.: A parametric study of the galloping stability of two-dimensional triangular cross-section bodies. J. Wind Eng. Ind. Aerodyn. 94, 241–253 (2006). https://doi.org/10.1016/J.JWEIA.2006.01.009

    Article  Google Scholar 

  18. Alonso, G.; Meseguer, J.; Sanz-Andrés, A.; Valero, E.: On the galloping instability of two-dimensional bodies having elliptical cross-sections. J. Wind Eng. Ind. Aerodyn. 98, 438–448 (2010). https://doi.org/10.1016/J.JWEIA.2010.02.002

    Article  Google Scholar 

  19. Sirohi, J.; Mahadik, R.: Piezoelectric wind energy harvester for low-power sensors. J. Intell. Mater. Syst. Struct. 22, 2215–2228 (2011). https://doi.org/10.1177/1045389X11428366

    Article  Google Scholar 

  20. Bryant, M.; Garcia, E.: Development of an aeroelastic vibration power harvester. In: Ahmadian, M., Ghasemi-Nejhad, M.N. (eds.) SPIE Smart Structures and Materials, Nondestructive Evaluation and Health Monitoring, p. 728812. International Society for Optics and Photonics, Bellingham (2009)

    Google Scholar 

  21. Truitt, A.; Mahmoodi, S.N.: A review on active wind energy harvesting designs. Int. J. Precis. Eng. Manuf. 14, 1667–1675 (2013). https://doi.org/10.1007/s12541-013-0226-4

    Article  Google Scholar 

  22. Sousa, V.C.; de Anicézio, M.; De Marqui Jr, C.; Erturk, A.: Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. Smart Mater. Struct. 20, 094007 (2011). https://doi.org/10.1088/0964-1726/20/9/094007

    Article  Google Scholar 

  23. Abdelkefi, A.; Ghommem, M.; Nuhait, A.O.; Hajj, M.R.: Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters. J. Sound Vib. 333, 166–177 (2014). https://doi.org/10.1016/J.JSV.2013.08.032

    Article  Google Scholar 

  24. Abdelkefi, A.; Nuhait, A.O.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013). https://doi.org/10.1088/0964-1726/22/9/095029

    Article  Google Scholar 

  25. Anton, S.R.; Erturk, A.; Inman, D.J.: Multifunctional self-charging structures using piezoceramics and thin-film batteries. Smart Mater. Struct. 19, 115021 (2010). https://doi.org/10.1088/0964-1726/19/11/115021

    Article  Google Scholar 

  26. Wang, Y.; Inman, D.J.: Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics. J. Compos. Mater. 47, 125–146 (2013). https://doi.org/10.1177/0021998312448677

    Article  Google Scholar 

  27. Anton, S.R.; Erturk, A.; Inman, D.J.: Multifunctional unmanned aerial vehicle wing spar for low-power generation and storage. J. Aircr. 49, 292–301 (2012). https://doi.org/10.2514/1.C031542

    Article  Google Scholar 

  28. Erturk, A.; Bilgen, O.; Fontenille, M.; Inman, D.J.: Piezoelectric energy harvesting from macro-fiber composites with an application to morphing-wing aircrafts. In: 19th International Conference on Adaptive Structures and Technologies (ICAST). Swiss Federal Laboratories for Materials Science and Technology (Empa), Ascona, Switzerland (2008)

  29. Roundy, S.; Wright, P.; Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003). https://doi.org/10.1016/S0140-3664(02)00248-7

    Article  Google Scholar 

  30. Dutoit, N.; Wardle, B.; Kim, S.: Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71, 121–160 (2005)

    Article  Google Scholar 

  31. DuToit, N.; Wardle, B.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45, 1126–1137 (2007). https://doi.org/10.2514/1.25047

    Article  Google Scholar 

  32. Elvin, N.G.; Elvin, A.A.: A general equivalent circuit model for piezoelectric generators. J. Intell. Mater. Syst. Struct. 20, 3–9 (2009). https://doi.org/10.1177/1045389X08089957

    Article  Google Scholar 

  33. Erturk, A.; Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009). https://doi.org/10.1088/0964-1726/18/2/025009

    Article  Google Scholar 

  34. Rupp, C.J.; Evgrafov, A.; Maute, K.; Dunn, M.L.: Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J. Intell. Mater. Syst. Struct. 20, 1923–1939 (2009)

    Article  Google Scholar 

  35. De Marqui Junior, C.; Erturk, A.; Inman, D.J.: An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327, 9–25 (2009). https://doi.org/10.1016/J.JSV.2009.05.015

    Article  Google Scholar 

  36. Djavareshkian, M.H.; Esmaeli, A.; Parsani, A.: Aerodynamics of smart flap under ground effect. Aerosp. Sci. Technol. 15, 642–652 (2011). https://doi.org/10.1016/j.ast.2011.01.005

    Article  Google Scholar 

  37. Djavareshkian, M.H.; Esmaeili, A.; Parsania, A.; Ziaforoughi, A.: 3D investigation on the aerodynamic of smart flap for WIG vehicle. Trans. Jpn. Soc. Aeronaut. Space Sci. J. (2011). https://doi.org/10.2322/tastj.9.51

    Article  Google Scholar 

  38. Michelin, S.; Doare, O.: Energy harvesting efficiency of piezoelectric flags in axial flows. J. Fluid Mechnics. (2012). https://doi.org/10.1017/jfm.2012.494

    Article  MATH  Google Scholar 

  39. McCarthy, J.M.; Watkins, S.; Deivasigamani, A.; John, S.J.; Coman, F.: An investigation of fluttering piezoelectric energy harvesters in off-axis and turbulent flows. J. Wind Eng. Ind. Aerodyn. 136, 101–113 (2015). https://doi.org/10.1016/J.JWEIA.2014.10.021

    Article  Google Scholar 

  40. Amini, Y.; Emdad, H.; Farid, M.: Piezoelectric energy harvesting from vertical piezoelectric beams in the horizontal fluid flows. Sci. Iran. 24, 2396–2405 (2017). https://doi.org/10.24200/sci.2017.4240

    Article  Google Scholar 

  41. Akaydin, H.D.; Elvin, N.; Andreopoulos, Y.: Energy harvesting from highly unsteady fluid flows using piezoelectric materials. J. Intell. Mater. Syst. Struct. 21, 1263–1278 (2010). https://doi.org/10.1177/1045389X10366317

    Article  Google Scholar 

  42. Akaydın, H.; Elvin, N.; Andreopoulos, Y.: Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp. Fluids 49, 291–304 (2010)

    Article  Google Scholar 

  43. Bryant, M.; Mahtani, R.L.; Garcia, E.: Wake synergies enhance performance in aeroelastic vibration energy harvesting. J. Intell. Mater. Syst. Struct. 23, 1131–1141 (2012). https://doi.org/10.1177/1045389X12443599

    Article  Google Scholar 

  44. Zhao, D.; Ega, E.: Energy harvesting from self-sustained aeroelastic limit cycle oscillations of rectangular wings. Appl. Phys. Lett. 105, 103903 (2014). https://doi.org/10.1063/1.4895457

    Article  Google Scholar 

  45. Abdelkefi, A.; Hajj, M.R.: Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity. Theor. Appl. Mech. Lett. (2013). https://doi.org/10.1063/2.1304101

    Article  Google Scholar 

  46. Erturk, A.; Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130, 041002 (2008). https://doi.org/10.1115/1.2890402

    Article  Google Scholar 

  47. IEEE standard on piezoelectricity. IEEE, New York (1987)

  48. Erturk, A.; Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311–1325 (2008). https://doi.org/10.1177/1045389X07085639

    Article  Google Scholar 

  49. Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, La Canada (2006)

    Google Scholar 

  50. Esmaeili, A.; Delgado, H.E.C.; Sousa, J.M.M.: Numerical simulations of low-Reynolds-number flow past finite wings with leading-edge protuberances. J. Aircr. 55, 226–238 (2018). https://doi.org/10.2514/1.C034591

    Article  Google Scholar 

  51. Langtry, R.B.; Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47, 2894–2906 (2009). https://doi.org/10.2514/1.42362

    Article  Google Scholar 

  52. Kobayashi, M.H.; Pereira, J.C.F.; Sousa, J.M.M.: Comparison of several open boundary numerical treatments for laminar recirculating flows. Int. J. Numer. Methods Fluids. 16, 403–419 (1993). https://doi.org/10.1002/fld.1650160505

    Article  MATH  Google Scholar 

  53. Pereira, J.C.F.; Sousa, J.M.M.: Finite volume calculations of self-sustained oscillations in a grooved channel. J. Comput. Phys. 106, 19–29 (1993)

    Article  Google Scholar 

  54. Yang, Z.; Igarashi, H.; Martin, M.; Hu, H.; Introduction, I.; Student, U.: An experimental investigation on aerodynamic hysteresis of a low-Reynolds number airfoil. In: 46th AIAA Aerospace Science Meeting and Exhibit, pp. 1–11 (2008)

  55. Amini, Y.; Emdad, H.; Farid, M.: An accurate model for numerical prediction of piezoelectric energy harvesting from fluid structure interaction problems. Smart Mater. Struct. 23, 095034 (2014). https://doi.org/10.1088/0964-1726/23/9/095034

    Article  Google Scholar 

  56. Rojratsirikul, P.; Genc, M.S.; Wang, Z.; Gursul, I.: Flow-induced vibrations of low aspect ratio rectangular membrane wings. J. Fluids Struct. 27, 1296–1309 (2011). https://doi.org/10.1016/J.JFLUIDSTRUCTS.2011.06.007

    Article  Google Scholar 

  57. Zaman, K.B.M.Q.; Potapczuk, M.G.: The low frequency oscillation in the flow over a NACA0012 airfoil with an “Iced” leading edge. In: Low Reynolds Number Aerodynamics, pp. 271–282. Springer, Berlin (1989)

  58. Kundu, S.; Nemade, H.B.: Modeling and simulation of a piezoelectric vibration energy harvester. Proc. Eng. 144, 568–575 (2016). https://doi.org/10.1016/J.PROENG.2016.05.043

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Fundação para a Ciência e a Tecnologia (FCT), through IDMEC, under LAETA, project UID/EMS/50022/2019. The financial support via FCT scholarships SFRH/BD/100554/2014 is acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Esmaeili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, A., Sousa, J.M.M. Flow-Driven Piezoelectric Energy Harvester on a Full-Span Wing for Micro-aerial-vehicle (MAV) Application. Arab J Sci Eng 45, 5713–5728 (2020). https://doi.org/10.1007/s13369-020-04526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04526-2

Keywords

Navigation