Skip to main content
Log in

Determination of Effective Parameters for Alpha-Amylase Production in a Modified Rotating Drum Bioreactor

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, rotating drum bioreactor (RDB), one of the most important bioreactors, used in the solid substrate fermentation was designed by adapting to slurry fermentation. Although conventional RDB is an important microbial production system in terms of preventing heat accumulation and having low shear stress on microorganisms, it is not completely adequate due to heat and mass transfer limitations and low working volume requirement. In order to minimize these problems, ceramic micro-air diffuser was used in modified RDB design. Dissolved oxygen concentration, pH, temperature, oxygen, and carbon dioxide were measured as online. Effects of seven operation parameters such as rotation speed, aeration rate, working volume, diffuser’s pore diameter, baffle size, temperature, and inoculum size on the \(\alpha \)-amylase production in modified RDB were determined by Plackett–Burman design. The rotation speed, aeration rate, and baffle size were statistically significant parameters with low p values (\(p < 0.05\)) calculated by ANOVA. The maximum value of the specific productivity (\(50.86\,\hbox {IU\,g}^{-1}\,\hbox {h}^{-1}\)) was obtained at the high point (\(+\) 1) of the significant parameters. As a result, it has been improved an important bioreactor for the cheap enzyme production using agricultural wastes by modified RDB that can be operated at high working volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Enzymes Market Report (2016). US grand view research. http://www.grandviewresearch.com/press-release/global-enzymes-market (2017). Accessed 14 Feb 2017

  2. Deb, P.; Talukdar, S.A.; Mohsina, K.; Sarker, P.K.; Sayem, S.A.: Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springerplus 154, 1–12 (2013)

    Google Scholar 

  3. Gangadharan, D.; Sivaramakrishnan, S.; Nampoothiri, K.M.; Pandey, A.: Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol. Biotechnol. 44, 269–274 (2006)

    Google Scholar 

  4. Pandey, A.; Soccol, C.R.; Mitchell, D.: New developments in solid state fermentation: I—bioprocesses and products. Process Biochem. 35, 1153–1169 (2000)

    Article  Google Scholar 

  5. Pandey, A.: Solid-state fermentation. Biochem. Eng. J. 13, 81–84 (2003)

    Article  Google Scholar 

  6. Gema, H.; Kavadia, A.; Dimou, D.; Tsagou, V.; Komaitis, M.; Aggelis, G.: Production of \(\gamma \)-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl. Microbiol. Biotechnol. 58, 303–307 (2002)

    Article  Google Scholar 

  7. Tanyildizi, M.; Özer, D.: An investigation of \(\alpha \)-amylase production in semi solid substrate fermentation by using corn bran with Bacillus amyloliquefaciens. Turk. J. Sci. Technol. 6, 47–52 (2011)

    Google Scholar 

  8. Glover, K.; Benno, K.: Theoretical characterization of slurry fermentation. Eng. Life Sci. 5, 237–241 (2003)

    Article  Google Scholar 

  9. De Gregorio, G.A.; Mandalari, G.; Arena, N.; Nucita, F.; Tripodo, M.M.; Lo Curto, R.B.: SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresour. Technol. 83, 89–94 (2002)

    Article  Google Scholar 

  10. Zhong, W.; Cen, P.: Pectinase production by Aspergillus niger P-6021 on citrus Changshan-huyou peel in slurry-state fermentation. Chin. J. Chem. Eng. 4, 510–515 (2005)

    Google Scholar 

  11. Couto, S.R.; Sanromán, M.A.: Application of solid-state fermentation to food industry—a review. J. Food Eng. 76, 291–302 (2006)

    Article  Google Scholar 

  12. Economou, C.N.; Makri, A.; Aggelis, G.; Pavlou, S.; Vayenas, D.: Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour. Technol. 101, 1385–1388 (2010)

    Article  Google Scholar 

  13. Onofre, S.B.; Groff, S.; Sartori, A.; Bertolini, J.; Kagimura, F.; Rotta, D.; Mazzali, L.; Steilmann, P.: Production of \(\alpha \)-amylase and amyloglucosidase by the Fungus cylindrocladium sp. in semi-solid state fermentation. J Microbiol. Res. 2, 123–126 (2012)

    Article  Google Scholar 

  14. Reddy, G.; Babu, P.R.; Komaraiah, P.; Roy, K.; Kothari, I.: Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem. 38, 1457–1462 (2003)

    Article  Google Scholar 

  15. Chhaya, U.; Gupte, A.: Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation. Ann. Microbiol. 63, 215–223 (2013)

    Article  Google Scholar 

  16. Machado, I.; Teixeira, J.A.; Couto, S.R.: Semi-solid-state fermentation: a promising alternative for neomycin production by the actinomycete Streptomyces fradiae. J. Biotechnol. 165, 195–200 (2013)

    Article  Google Scholar 

  17. Zhang, W.; Zou, H.; Jiang, l; Yao, J.; Liang, J.; Wang, Q.: Semi-solid state fermentation of food waste for production of Bacillus thuringiensis biopesticide. Biotechnol. Bioprocess Eng. 6, 1123–1132 (2015)

    Article  Google Scholar 

  18. Chitturi, C.M.K.; Lakshmi, V.V.: Development of semi-solid state fermentation of Keratinase and optimization of process by cheaper and alternative agricultural wastes. Eur. J. Biotechnol. Biosci. 2, 1–4 (2016)

    Google Scholar 

  19. Birhanlı, E.; Yesilada, O.: The utilization of lignocellulosic wastes for laccase production under semisolid-state and submerged fermentation conditions. Turk. J. Biol. 37, 450–456 (2013)

    Article  Google Scholar 

  20. Jin, J.; Liu, G.L.; Shi, S.Y.; Cong, W.: Studies on the performance of a rotating drum bioreactor for bioleaching processes. Oxygen transfer, solids distribution and power consumption. Hydrometallurgy 103, 30–34 (2010)

    Article  Google Scholar 

  21. Mitchell, D.A.; Berovič, M.; Krieger, N.: Solid-State Fermentation Bioreactor: Fundamentals of Design and Operation. Springer, Berlin (2006)

    Book  Google Scholar 

  22. Fung, C.J.; Mitchell, D.A.: Baffles increase performance of solid-state fermentation in rotating drum bioreactors. Biotechnol. Tech. 9, 295–298 (1995)

    Article  Google Scholar 

  23. Stuart, D.M.: Solid-state fermentation in rotating drum bioreactors. Ph.D. thesis, The University of Queensland, Australia (1996)

  24. Wang, Z.; Wen, Q.; Zhang, Q.; Liu, G.; Wu, X.; Cong, W.: Power consumption of liquid and liquid/solid systems in a rotating-drum bioreactor. Chem. Eng. Technol. 36, 1395–1401 (2013)

    Article  Google Scholar 

  25. Hardin, M.T.; Howes, T.; Mitchell, D.A.: Mass transfer correlations for rotating drum bioreactors. J. Biotechnol. 1, 89–101 (2002)

    Article  Google Scholar 

  26. Nehring, D.; Czermak, P.; Vorlop, J.; Lübben, H.: Experimental study of a ceramic microsparging aeration system in a pilot-scale animal cell culture. Biotechnol. Prog. 20, 1710–1717 (2004)

    Article  Google Scholar 

  27. Czermak, P.; Weber, C.; Nehring, D.; Hall, D.: A ceramic microsparging aeration system for cell culture reactors. Publ. Ser. IBPT Univ. Appl. Sci. Giess. Friedberg 1, 1–6 (2005)

    Google Scholar 

  28. Kunas, K.T.; Papoutsakis, E.T.: Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol. Bioeng. 5, 476–483 (1990)

    Article  Google Scholar 

  29. Wu, J.: Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives. J. Biotechnol. 2, 81–94 (1995)

    Article  Google Scholar 

  30. Meier, S.J.; Hatton, T.A.; Wang, D.I.: Cell death from bursting bubbles: role of cell attachment to rising bubbles in sparged reactors. Biotechnol. Bioeng. 4, 468–478 (1999)

    Article  Google Scholar 

  31. Michaels, J.D.; Mallik, A.K.; Papoutsakis, E.T.: Sparging and agitation-induced injury of cultured animals cells: do cell-to-bubble interactions in the bulk liquid injure cells? Biotechnol. Bioeng. 4, 399–409 (1996)

    Article  Google Scholar 

  32. Liu, G.; Jin, J.; Wena, S.; Wanga, Z.; Zhang, Q.; Cong, W.: Research on the characteristic of power consumption in a novel rotating drum bioleaching reactor of different sizes. Miner. Eng. 53, 16–23 (2013)

    Article  Google Scholar 

  33. Bernfeld, P.: Amylases, \(\alpha \) and \(\beta \). Methods Enzymol. 1, 149–158 (1955)

    Article  Google Scholar 

  34. Atri, M.R.; Ashrafizadeh, S.N.: The importance of foams and antifoaming in bioprocesses. Pak. J. Biotechnol. 7, 19–39 (2010)

    Google Scholar 

  35. Jin, J.; Shi, S.; Liu, G.; Zhang, Q.; Cong, W.: Arsenopyrite bioleaching by Acidithiobacillus ferrooxidans in a rotating-drum reactor. Miner. Eng. 39, 19–22 (2012)

    Article  Google Scholar 

  36. Domınguez, A.; Rivela, I.; Couto, S.R.; Sanromán, M.Á.: Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochem. 37, 549–554 (2001)

    Article  Google Scholar 

  37. Derakhti, S.; Shojaosadati, S.A.; Hashemi, M.; Khajeh, K.: Process parameters study of \(\alpha \)-amylase production in a packed-bed bioreactor under solid-state fermentation with possibility of temperature monitoring. Prep. Biochem. Biotechnol. 42, 203–216 (2012)

    Article  Google Scholar 

  38. Schutyser, M.; De Pagter, P.; Weber, F.; Briels, W.; Boom, R.; Rinzema, A.: Substrate aggregation due to aerial hyphae during discontinuously mixed solid-state fermentation with Aspergillus oryzae: experiments and modeling. Biotechnol. Bioeng. 83, 503–513 (2003)

    Article  Google Scholar 

  39. Marsh, A.J.; Mitchell, D.A.; Stuart, D.M.; Howes, T.: \(\text{ O }_{2}\) uptake during solid-state fermentation in a rotating drum bioreactor. Biotechnol. Lett. 20, 607–611 (1998)

    Article  Google Scholar 

  40. Tanyildizi, M.S.: Investigation of \(\alpha \)-amylase production with bacteria strains at different and medium conditions. Ph.D. thesis, Firat University, Turkey (2005)

  41. Nikakhtari, H.; Kumar, P.; Nemati, M.; Hill, G.A.: Mass transfer and bioremediation of aromatics from NAPL in a baffled roller bioreactor. Process Saf. Environ. Prot. 86, 252–258 (2008)

    Article  Google Scholar 

  42. Terebiznik, M.R.; Pilosof, A.M.R.: Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol. Tech. 13, 215–219 (1999)

    Article  Google Scholar 

  43. Prajapati, V.S.; Trivedi, U.B.; Patel, K.C.: A statistical approach for the production of thermostable and alklophilic alpha-amylase from Bacillus amyloliquefaciens KCP2 under solid-state fermentation. 3 Biotech 5, 211–220 (2015)

    Article  Google Scholar 

  44. Oliveira, A.P.A.; Silvestre, M.A.; Prado, H.F.A.; Rodrigues, A.; Paz, M.F.; Fonseca, G.G.; Leite, R.S.R.: Bioprospecting of yeasts for amylase production in solid state fermentation and evaluation of the catalytic properties of enzymatic extracts. Afr. J. Biotechnol. 14, 1215–1223 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by The Scientific and Technological Research Council of TURKEY (TUBITAK No. 115M502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ş. Tanyildizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uygut, M.A., Tanyildizi, M.Ş. Determination of Effective Parameters for Alpha-Amylase Production in a Modified Rotating Drum Bioreactor. Arab J Sci Eng 43, 3381–3391 (2018). https://doi.org/10.1007/s13369-017-3055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3055-4

Keywords

Navigation