Skip to main content
Log in

Structural Features of Silica Coating Obtained from Sol Cooled to the Temperature of Liquid Nitrogen

  • Research Article - Special Issue - Functional Materials - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A new approach to controlling the structure of silica films formed by the sol–gel method is proposed. The models of formation of the silica coatings, obtained from the sol, cooled to the liquid nitrogen temperature, have been developed. It was found that as a result of this process, one can obtain aggregates consisting of spindle-shaped nanoparticles with sizes of the order of tens of nanometers, formed during the preparation of sol. The proposed model predicts aggregate sizes that depend on the synthesis conditions. The results obtained can be useful for the preparation of films with controlled degree of nanocrystallite’s agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whelan, A.M.: Sol–Gel Sensors. In: Pillai, S.C., Hehir, S. (eds.) Sol–Gel Materials for Energy, Environment and Electronic Applications, pp. 121–153. Springer International Publishing, Berlin (2017)

    Chapter  Google Scholar 

  2. Brinker, C.F.; Scherer, G.W.: Sol–Gel Science. The Physics and Chemistry of Sol-Gel Processing. Academic Press Inc, San Diego (1990)

    Google Scholar 

  3. Dimitrov, D.T.; Nikolaev, N.K.; Papazova, K.I.; Krasteva, L.K.; Pronin, I.A.; Averin, I.A.; Bojinova, A.S.; Georgieva, A.T.; Yakushova, N.D.; Peshkova, T.V.; Karmanov, A.A.; Kaneva, N.V.; Moshnikov, V.A.: Investigation of the electrical and ethanol-vapour sensing properties of the junctions based on ZnO nanostructured thin film doped with copper. Appl. Surf. Sci. 392, 95–108 (2017)

    Article  Google Scholar 

  4. Korotcenkov, G.: The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R 61, 1–39 (2008)

    Article  Google Scholar 

  5. Parashar, V.K.; Sayah, A.; Pfeffer, M.; Schoch, F.; Gobrecht, J.; Gijs, M.A.M.: Nano-replication of diffractive optical elements in sol-gel derived glasses. Microelectron. Eng. 67, 710–719 (2003)

    Article  Google Scholar 

  6. Kaneva, N.; Stambolova, I.; Blaskov, V.; Dimitriev, Y.; Bojinova, A.; Dushkin, C.: A comparative study on the photocatalytic efficiency of ZnO thin films prepared by spray pyrolysis and sol-gel method. Surf. Coat. Technol. 207, 5–10 (2012)

    Article  Google Scholar 

  7. Kai, Z.; Boccaccini, A.R.: Sol-gel processing of bioactive glass nanoparticles: a review. Adv. Colloid. Interf. Sci. (2017). doi:10.1016/j.cis.2017.03.008

    Google Scholar 

  8. Baino, F.; Fiorilli, S.; Vitale-Brovarone, C.: Composite biomaterials based on sol–gel mesoporous silicate glasses: a review. Bioengineering 4, 15 (2017)

    Article  Google Scholar 

  9. Nivens, D.A.; Schiza, M.V.; Angel, S.M.: Multilayer sol–gel membranes for optical sensing applications: single layer pH and dual layer CO\(_{2}\) and NH\(_{3}\) sensors. Talanta 58, 543–550 (2002)

    Article  Google Scholar 

  10. Korotcenkov, G.; Cho, B.K.: Engineering approaches to improvement operating characteristics of conductometric gas sensors. Part 2: decrease of dissipated (consumable) power and improvement stability and reliability. Sens. Actuators B 198, 316–341 (2014)

    Article  Google Scholar 

  11. Korotcenkov, G.; Cho, B.K.: Engineering approaches to improvement operating characteristics of conductometric gas sensors. Part 1: improvement of sensor sensitivity and selectivity. Sens. Actuators B 188, 709–728 (2013)

  12. Martin, G.A.; Mirodatos, C.; Praliaud, H.: Chemistry of silica-supported catalysts: preparation activation and reduction. Appl. Catal. 1(6), 367–382 (1981)

    Article  Google Scholar 

  13. Rahman, I.A.; Padavettan, V.: Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites - A review. J. Nanomater. 2012, 1–15 (2012)

    Article  Google Scholar 

  14. Livage, J.; Henry, M.; Sanchez, C.: Sol–gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–341 (1988)

    Article  Google Scholar 

  15. Moshnikov, V.A.; Gracheva, I.E.; Lenshin, A.S.; Spivak, Y.M.; Anchkov, M.G.; Kuznetsov, V.V.; Olchowik, J.M.: Porous silicon with embedded metal oxides for gas sensing applications. J. Non Cryst. Solids 358, 590–595 (2012)

    Article  Google Scholar 

  16. Stober, W.; Fink, A.; Bohn, E.: Controlled growth of monodisperse silica particles in the micron size range. J. Colloid Interf. Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  17. Bogush, G.H.; Tracy, M.A.; Zuloski, C.F.: Preparation of monodisperse silica particles: control of size and mass fraction. J. Non Cryst. Solids 104, 95–106 (1988)

    Article  Google Scholar 

  18. Mukai, S.R.; Nishihara, H.; Tamon, H.: Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous Mesoporous Mater. 63, 43–51 (2003)

    Article  Google Scholar 

  19. Brinker, C.J.; Scherer, G.W.: \(\text{ Sol }\rightarrow \,\text{ gel }\rightarrow \) glass: I. Gelation and gel structure. J. Non Cryst. Solids 70, 301–322 (1985)

    Article  Google Scholar 

  20. Orcel, G.; Phalippou, J.; Hench, L.L.: Structural changes of silica xerogels during low temperature dehydration. J. Non Cryst. Solids 88, 114–130 (1986)

    Article  Google Scholar 

  21. van der Vis, M.G.M.; Konings, R.J.M.; Oskam, A.; Snoeck, T.L.: The vibrational spectra of gaseous and liquid tetraethoxysilane. J. Mol. Struct. 274, 47–57 (1992)

    Article  Google Scholar 

  22. Mondragón, M.A.; Castaño, V.M.; Garcia, J.; Téllez, S.C.A.: Vibrational analysis of \({{\text{ Si }}{(}{\text{ OC }}_{2}{\text{ H }}_{5}{)}_{4}}\) and spectroscopic studies on the formation of glasses via silica gels. Vib. Spectrosc. 9, 293–304 (1995)

    Article  Google Scholar 

  23. Lenza, R.F.S.; Vasconcelos, W.L.: Preparation of silica by sol–gel method using formamide. Mater. Res. 4(3), 189–194 (2001)

    Article  Google Scholar 

  24. Karmakar, B.; Goutam, D.; Dibyendu, G.: Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J. Non Cryst. Solids 272, 119–126 (2000)

    Article  Google Scholar 

  25. Pronin, I.A.; Goryacheva, M.V.: Principles of structure formation and synthesis models of produced by the sol–gel method \({{\text{ SiO }}_{{2}}{-}{\text{ Me }}_{{{\rm x}}}{\text{ O }}}\) nanocomposites. Surf. Coat. Technol. 235, 835–840 (2013)

    Article  Google Scholar 

  26. Arriagada, F.J.; Osseo-Asare, K.: Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J. Colloid Interf. Sci. 218, 68–76 (1999)

    Article  Google Scholar 

  27. Nagao, D.; Satoh, T.; Konno, M.: A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate. J. Coll. Interf. Sci. 232, 102–110 (2000)

    Article  Google Scholar 

  28. Witten Jr., T.A.; Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  Google Scholar 

  29. Smoluchowski, M.: Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen. Physik. Z. 17(557–571), 585–599 (1916)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Pronin or G. Korotcenkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronin, I.A., Averin, I.A., Yakushova, N.D. et al. Structural Features of Silica Coating Obtained from Sol Cooled to the Temperature of Liquid Nitrogen. Arab J Sci Eng 42, 4299–4305 (2017). https://doi.org/10.1007/s13369-017-2804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2804-8

Keywords

Navigation