Skip to main content
Log in

Microplasma Discharge Vacuum Ultraviolet Photoionization Source for Atmospheric Pressure Ionization Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

In this paper, we demonstrate the first use of an atmospheric pressure microplasma-based vacuum ultraviolet (VUV) photoionization source in atmospheric pressure mass spectrometry applications. The device is a robust, easy-to-operate microhollow cathode discharge (MHCD) that enables generation of VUV photons from Ne and Ne/H2 gas mixtures. Photons were detected by excitation of a microchannel plate detector and by analysis of diagnostic sample ions using a mass spectrometer. Reactive ions, charged particles, and metastables produced in the discharge were blocked from entering the ionization region by means of a lithium fluoride window, and photoionization was performed in a nitrogen-purged environment. By reducing the output pressure of the MHCD, we observed heightened production of higher-energy photons, making the photoionization source more effective. The initial performance of the MHCD VUV source has been evaluated by ionizing model analytes such as acetone, azulene, benzene, dimethylaniline, and glycine, which were introduced in solid or liquid phase. These molecules represent species with both high and low proton affinities, and ionization energies ranging from 7.12 to 9.7 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Horning, E.C., Horning, M.G., Carroll, D.I., Dzidic, I., Stillwel, R.N.: New picogram detection system based on a mass-spectrometer with an external ionization source at atmospheric-pressure. Anal. Chem. 45, 936–943 (1973)

    Article  CAS  Google Scholar 

  2. Dzidic, I., Carroll, D.I., Stillwell, R.N., Horning, E.C.: Comparison of positive-ions formed in nickel-63 and corona discharge ion sources using nitrogen, argon, isobutane, ammonia, and nitric-oxide as reagents in atmospheric-pressure ionization mass-spectrometry. Anal. Chem. 48, 1763–1768 (1976)

    Article  CAS  Google Scholar 

  3. Zhao, J.G., Zhu, J.Z., Lubman, D.M.: Liquid sample injection using an atmospheric-pressure direct-current glow-discharge ionization source. Anal. Chem. 64, 1426–1433 (1992)

    Article  CAS  Google Scholar 

  4. Sofer, I., Zhu, J.Z., Lee, H.S., Antos, W., Lubman, D.M.: An atmospheric-pressure glow-discharge ionization source. Appl. Spectrosc. 44, 1391–1398 (1990)

    Article  CAS  Google Scholar 

  5. Monge, M.E., Harris, G.A., Dwivedi, P., Fernandez, F.M.: Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. 113, 2269–2308 (2013)

    Article  CAS  Google Scholar 

  6. Cody, R.B., Laramee, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005)

    Article  CAS  Google Scholar 

  7. Harper, J.D., Charipar, N.A., Mulligan, C.C., Zhang, X., Cooks, R.G., Ouyang, Z.: Low-temperature plasma probe for ambient desorption ionization. Anal. Chem. 80, 9097–9104 (2008)

    Article  CAS  Google Scholar 

  8. Andrade, F.J., Shelley, J.T., Wetzel, W.C., Webb, M.R., Gamez, G., Ray, S.J., Hieftje, G.M.: Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal. Chem. 80, 2646–2653 (2008)

    Article  CAS  Google Scholar 

  9. Miclea, M., Okruss, M., Kunze, K., Ahlman, N., Franzke, J.: Microplasma-based atomic emission detectors for gas chromatography. Anal. Bioanal. Chem. 388, 1565–1572 (2007)

    Article  CAS  Google Scholar 

  10. Symonds, J.M., Galhena, A.S., Fernandez, F.M., Orlando, T.M.: Microplasma discharge ionization source for ambient mass spectrometry. Anal. Chem. 82, 621–627 (2010)

    Article  CAS  Google Scholar 

  11. Franzke, J.: Microdischarges for analytical applications. Anal. Bioanal. Chem. 395, 547–548 (2009)

    Article  CAS  Google Scholar 

  12. Foest, R., Schmidt, M., Becker, K.: Microplasmas, an emerging field of low-temperature plasma science and technology. Int. J. Mass Spectrom. 248, 87–102 (2006)

    Article  CAS  Google Scholar 

  13. Franzke, J.: The micro-discharge family (dark, corona, and glow-discharge) for analytical applications realized by dielectric barriers. Anal. Bioanal. Chem. 395, 549–557 (2009)

    Article  CAS  Google Scholar 

  14. Becker, K.H., Schoenbach, K.H., Eden, J.G.: Microplasmas and applications. J. Phys. D: Appl. Phys. 39, R55–R70 (2006)

    Article  CAS  Google Scholar 

  15. Gianchandani, Y.B., Wright, S.A., Eun, C.K., Wilson, C.G., Mitra, B.: Exploring microdischarges for portable sensing applications. Anal. Bioanal. Chem. 395, 559–575 (2009)

    Article  CAS  Google Scholar 

  16. Vautz, W., Michels, A., Franzke, J.: Microplasma: a novel ionisation source for ion mobility spectrometry. Anal. Bioanal. Chem. 391, 2609–2615 (2008)

    Article  CAS  Google Scholar 

  17. Karanassios, V., Johnson, K., Smith, A.T.: Micromachined, planar-geometry, atmospheric-pressure, battery-operated microplasma devices (MPDS) on chips for analysis of microsamples of liquids, solids, or gases by optical-emission spectrometry. Anal. Bioanal. Chem. 388, 1595–1604 (2007)

    Article  CAS  Google Scholar 

  18. Weagant, S., Karanassios, V.: Helium-hydrogen microplasma device (MPD) on postage-stamp-size plastic-quartz chips. Anal. Bioanal. Chem. 395, 577–589 (2009)

    Article  CAS  Google Scholar 

  19. Meyer, C., Heming, R., Gurevich, E.L., Marggraf, U., Okruss, M., Florek, S., Franzke, J.: Radiofrequency driven and low cost fabricated microhollow cathode discharge for gaseous atomic emission spectrometry. J. Anal. At. Spectrom. 26, 505–510 (2011)

    Article  CAS  Google Scholar 

  20. Guchardi, R., Hauser, P.C.: A capacitively coupled microplasma in a fused silica capillary. J. Anal. At. Spectrom. 18, 1056–1059 (2003)

    Article  CAS  Google Scholar 

  21. Park, S.J., Kim, K.S., Chang, A.Y., Hua, L.Z., Asinugo, J.C., Mehrotra, T., Spinka, T.M., Eden, J.G.: Confinement of nonequilibrium plasmas in microcavities with diamond or circular cross sections: sealed arrays of Al/Al2O3/glass microplasma devices with radiating areas above 20 cm(2). Appl. Phys. Lett. 89, 221501 (2006)

  22. Lazzaroni, C., Chabert, P.: Electrical characteristics of micro-hollow cathode discharges. J. Phys. D: Appl. Phys. 46, 455203 (2013)

    Article  Google Scholar 

  23. Hanley, L., Zimmermann, R.: Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal. Chem. 81, 4174–4182 (2009)

    Article  CAS  Google Scholar 

  24. Vaikkinen, A., Haapala, M., Kersten, H., Benter, T., Kostiainen, R., Kauppila, T.J.: Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization. Anal. Chem. 84, 1408–1415 (2012)

    Article  CAS  Google Scholar 

  25. Haapala, M., Pol, J., Saarela, V., Arvola, V., Kotiaho, T., Ketola, R.A., Franssila, S., Kauppila, T.J., Kostiainen, R.: Desorption atmospheric pressure photoionization. Anal. Chem. 79, 7867–7872 (2007)

    Article  CAS  Google Scholar 

  26. Robb, D.B., Covey, T.R., Bruins, A.P.: Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 72, 3653–3659 (2000)

    Article  CAS  Google Scholar 

  27. Chen, Y., Sullards, M.C., Hoang, T.T., May, S.W., Orlando, T.M.: Analysis of organoselenium and organic acid metabolites by laser desorption single photon ionization mass spectrometry. Anal. Chem. 78, 8386–8394 (2006)

    Article  CAS  Google Scholar 

  28. Schoenbach, K.H., El-Habachi, A., Moselhy, M.M., Shi, W.H., Stark, R.H.: microhollow cathode discharge excimer lamps. Phys. Plasmas 7, 2186–2191 (2000)

    Article  CAS  Google Scholar 

  29. Kurunczi, P., Lopez, J., Shah, H., Becker, K.: Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions. Int. J. Mass Spectrom. 205, 277–283 (2001)

    Article  CAS  Google Scholar 

  30. Meyer, C., Demecz, D., Gurevich, E.L., Marggraf, U., Jestel, G., Franzke, J.: Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy. J. Anal. At. Spectrom. 27, 677–681 (2012)

    Article  CAS  Google Scholar 

  31. Ladislas Wiza, J.: Microchannel plate detectors. Nucl. Instrum. Methods 162, 587–601 (1979)

    Article  Google Scholar 

  32. Wakaki, M., Kudo, K., Shibuya, T.L., Eds. Physical properties and data of optical materials. pp. 233–268. CRC Press, Boca Raton, Florida (2007)

  33. Ladenburg, R., Van Voorhis, C.C.: The continuous absorption of oxygen between 1750 and 1300Å and its bearing upon the dispersion. Phys. Rev. 43, 315–321 (1933)

    Article  CAS  Google Scholar 

  34. Watanabe, K., Zelikoff, M.: Absorption coefficients of water vapor in the vacuum ultraviolet. J. Opt. Soc. Am. 43, 753–754 (1953)

  35. Giuliani, A., Yao, I., Lagarde, B., Rey, S., Duval, J.P., Rommeluere, P., Jamme, F., Rouam, V., Wein, F., De Oliveira, C., Ros, M., Lestrade, A., Desjardins, K., Giorgetta, J.L., Laprevote, O., Herbaux, C., Refregiers, M.: A differential pumping system to deliver windowless VUV photons at atmospheric pressure. J. Synchrotron. Radiat. 18, 546–549 (2011)

    Article  CAS  Google Scholar 

  36. Heath, D.F., Sacher, P.A.: Effects of a simulated high-energy space environment on the ultraviolet transmittance of optical materials between 1050 Å and 3000 Å. Appl. Opt. 5, 937–943 (1966)

  37. Sansonettia, J., Martin, W.: Handbook of basic atomic spectroscopic data. J. of Phys. Chem. Ref. 34, 1560–2259 (2005)

  38. Paresce, F.: Quantum efficiency of a channel electron multiplier in the far ultraviolet. Appl. Opt. 14, 2823–2824 (1975)

    Article  CAS  Google Scholar 

  39. Schoenbach, K.H., Verhappen, R., Tessnow, T., Peterkin, F.E., Byszewski, W.W.: Microhollow cathode discharges. Appl. Phys. Lett. 68, 13–15 (1996)

    Article  CAS  Google Scholar 

  40. Kurunczi, P., Shah, H., Becker, K.: Hydrogen lyman-α and lyman-β emissions from high-pressure microhollow cathode discharges in Ne:H2 mixtures. J. Phys. B: At., Mol. Opt. Phys. 32, L651–L658 (1999)

  41. Cottin, H., Moore, M.H., Benilan, Y.: Photodestruction of relevant interstellar molecules in ice mixtures. Astrophys. J. 590, 874–881 (2003)

    Article  CAS  Google Scholar 

  42. Chen, P., Hou, K., Hua, L., Xie, Y., Zhao, W., Chen, W., Chen, C., Li, H.: Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry. Anal. Chem. 86, 1332–1336 (2014)

    Article  CAS  Google Scholar 

  43. Cody, R.B.: Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal. Chem. 81, 1101–1107 (2009)

    Article  CAS  Google Scholar 

  44. Lias, S.G.: Ionization energy evaluation. In: Linstrom, P.J., Mallard, W.G. (eds.) NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg (2011)

    Google Scholar 

  45. Song, L., Gibson, S.C., Bhandari, D., Cook, K.D., Bartmess, J.E.: Ionization mechanism of positive-ion direct analysis in real time: a transient microenvironment concept. Anal. Chem. 81, 10080–10088 (2009)

    Article  CAS  Google Scholar 

  46. Klee, S., Albrecht, S., Derpmann, V., Kersten, H., Benter, T.: Generation of ion-bound solvent clusters as reactant ions in dopant-assisted APPI and APLI. Anal. Bioanal. Chem. 405, 6933–6951 (2013)

  47. Abd El-Kader, F.H., Shokhba, A.A.: Molecular and fragment ion structure for ortho- and meta-xylene isomers. Int. J. Mass Spectrom. Ion Phys. 52, 59–63 (1983)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the US National Science Foundation (NSF) for support through an American Recovery and Reinvestment Act (ARRA) Major Research Instrumentation (MRI) Instrument Development grant No. 0923179 to F.M.F. and T.M.O. Portions of this work were also jointly supported by the NSF and the NASA Astrobiology Program, under the NSF Center for Chemical Evolution, CHE-1004570. Finally, the authors also thank Dr. Prabha Dwivedi for invaluable discussions on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Orlando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Symonds, J.M., Gann, R.N., Fernández, F.M. et al. Microplasma Discharge Vacuum Ultraviolet Photoionization Source for Atmospheric Pressure Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 1557–1564 (2014). https://doi.org/10.1007/s13361-014-0937-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0937-5

Key words

Navigation