Skip to main content
Log in

Improving CLM4.5 simulations of land–atmosphere exchange during freeze–thaw processes on the Tibetan Plateau

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and moisture transport. Therefore, soil has an important effect on land–atmosphere interactions. In this study, an improved soil parameterization scheme that considers gravel and organic matter in the soil was introduced into CLM4.5 (Community Land Model). By using data from the Zoige and Madoi sites on the Tibetan Plateau, the ability of the model to simultaneously simulate the duration of freeze–thaw periods, soil temperature, soil moisture, and surface energy during freeze–thaw processes, was validated. The results indicated that: (1) the new parameterization performed better in simulating the duration of the frozen, thawing, unfrozen, and freezing periods; (2) with the new scheme, the soil thermal conductivity values were decreased; (3) the new parameterization improved soil temperature simulation and effectively decreased cold biases; (4) the new parameterization scheme effectively decreased the dry biases of soil liquid water content during the freezing, completely frozen, and thawing periods, but increased the wet biases during the completely thawed period; and (5) the net radiation, latent heat flux, and soil surface heat flux of the Zoige and Madoi sites were much improved by the new organic matter and thermal conductivity parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beringer, J., A. H. Lynch, F. S. Chapin III, et al., 2001: The representation of arctic soils in the land surface model: The importance of mosses. J. Climate, 14, 3324–3335, doi: 10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2.

    Article  Google Scholar 

  • Bonan, G. B., 1996: A Land Surface Model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide. NCAR Technical Note NCAR/TN-417+STR, doi: 10.5065/D6DF6P5X.

    Google Scholar 

  • Bonan, G. B., P. J. Lawrence, K. W. Oleson, et al., 2011: Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from fluxnet data. J. Geophys. Res., 116, doi: 10.1029/2010JG001593.

    Google Scholar 

  • Côté, J., and J. M. Konrad, 2005a: Thermal conductivity of basecourse materials. Canad. Geotech. J., 42, 61–78, doi: 10.1139/t04-081.

    Article  Google Scholar 

  • Côté, J., and J. M. Konrad, 2005b: A generalized thermal conductivity model for soils and construction materials. Canad. Geotech. J., 42, 443–458, doi: 10.1139/t04-106.

    Article  Google Scholar 

  • Chen, B. L., S. H. Lü, and S. Q. Luo, 2012: Simulation analysis on land surface process at maqu station in the Qinghai–Xizang Plateau using community land model. Plateau Meteor., 31, 1511–1522. (in Chinese)

    Google Scholar 

  • Chen, B. L., S. Q. Luo, S. H. Lü, et al., 2014a: Effects of the soil freeze–thaw process on the regional climate of the Qinghai–Tibet Plateau. Climate Res., 59, 243–257, doi: 10.3354/cr01217.

    Article  Google Scholar 

  • Chen, B. L., S. Q. Luo, S. H. Lü, et al., 2014b: Validation and comparison of the simulation at Zoigê station during freezing and thawing with land surface model CLM. Climatic Environ. Res., 19, 649–658, doi: 10.3878/j.issn.1006-9585.2014.13013. (in Chinese)

    Google Scholar 

  • Chen, B. L., S. Q. Luo, S. H. Lü, et al., 2014c: Simulation and improvement of soil temperature and moisture at zoige station in source region of the Yellow River during freezing and thawing. Plateau Meteor., 33, 337–345. (in Chinese)

    Google Scholar 

  • Chen, Y. Y., K. Yang, W. J. Tang, et al., 2012: Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for eastern Tibet grasslands. Sci. China Earth Sci., 55, 1001–1011, doi: 10.1007/s11430-012-4433-0.

    Article  Google Scholar 

  • Fang, X. W., S. Q. Luo, S. H. Lyu, et al., 2016: A simulation and validation of CLM during freeze–thaw on the Tibetan Plateau. Adv. Meteor., 2016, 9476098, doi: 10.1155/2016/9476098.

    Article  Google Scholar 

  • Farouki, O. T., 1981: The thermal properties of soils in cold regions. Cold Regions Sci. Technol., 5, 67–75, doi: 10.1016/0165-232X(81)90041-0.

    Article  Google Scholar 

  • Farouki, O. T., 1986: Thermal Properties of Soils. Series on Rock and Soil Mechanics, Trans. Tech. Publ., Clausthal-Zellerfeld, Germany, Vol. 11, 12–28.

    Google Scholar 

  • Gao, Y. H., K. Li, F. Chen, et al., 2015: Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res., 120, 9258–9278, doi: 10.1002/2015JD023404.

    Google Scholar 

  • Gao, Z. Q., 2005: Determination of soil heat flux in a Tibetan short-grass prairie. Bound.-Layer Meteor., 114, 165–178, doi: 10.1007/s10546-004-8661-5.

    Article  Google Scholar 

  • Gao, Z. Q., X. G. Fan, and L. G. Bian, 2003: An analytical solution to one-dimensional thermal conduction-convection in soil. Soil Science, 168, 99–107, doi: 10.1097/00010694-200302000-00004.

    Article  Google Scholar 

  • Gao, Z. Q., N. Chae, J. Kim, et al., 2004: Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the simple biosphere model 2 (SiB2). J. Geophys. Res., 109, doi: 10.1029/2003JD004089.

    Google Scholar 

  • Guo, D. L., M. X. Yang, and H. J. Wang, 2011a: Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environ. Earth Sci., 63, 97–107, doi: 10.1007/s12665-010-0672-6.

    Article  Google Scholar 

  • Guo, D. L., M. X. Yang, and H. J. Wang, 2011b: Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrol. Processes, 25, 2531–2541, doi: 10.1002/hyp.8025.

    Article  Google Scholar 

  • Jin, H. J., R. X. He, G. D. Cheng, et al., 2009: Changes in frozen ground in the source area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts. Environ. Res. Lett., 4, 045206, doi: 10.1088/1748-9326/4/4/045206.

    Article  Google Scholar 

  • Johansen, O., 1975: Thermal conductivity of soils. Ph. D. dissertation, O US Army Cold Regions Research and Engineering Lab, Trondheim, Norway, 236 pp.

    Google Scholar 

  • Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, 145–160, doi: 10.1007/s00382-007-0278-1.

    Article  Google Scholar 

  • Lawrence, D. M., A. G. Slater, V. E. Romanovsky, et al., 2008: Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res., 113, doi: 10.1029/2007JF000883.

    Google Scholar 

  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Sys., 3, doi: 10.1029/2011MS00045.

    Google Scholar 

  • Letts, M. G., N. T. Roulet, N. T. Comer, et al., 2000: Parametrization of peatland hydraulic properties for the Canadian land surface scheme. Atmos.–Ocean, 38, 141–160, doi: 10.1080/07055900.2000.9649643.

    Article  Google Scholar 

  • Li, Z. G., S. H. Lyu, Y. H. Ao, et al., 2015: Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmos. Res., 155, 13–25, doi: 10.1016/j.atmosres.2014.11.019.

    Article  Google Scholar 

  • Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 1729–1742, doi: 10.1002/(ISSN)1097-0088.

    Article  Google Scholar 

  • Luo, S. Q., S. H. Lü, Y. Zhang, et al., 2008: Simulation analysis on land surface process of BJ site of central Tibetan Plateau using colm. Plateau Meteor., 27, 259–271. (in Chinese)

    Google Scholar 

  • Luo, S. Q., S. H. Lü, and Y. Zhang, 2009a: Development and validation of the frozen soil parameterization scheme in common land model. Cold Regions Sci. Technol., 55, 130–140, doi: 10.1016/j.coldregions.2008.07.009.

    Article  Google Scholar 

  • Luo, S. Q., S. H. Lü, Y. Zhang, et al., 2009b: Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau. Chinese J. Geophy., 52, 919–928. (in Chinese)

    Article  Google Scholar 

  • Luo, S. Q., X. W. Fang, S. H. Lyu, et al., 2016: Frozen ground temperature trends associated with climate change in the Tibetan Plateau three river source region from 1980 to 2014. Climate Res., 67, 241–255, doi: 10.3354/cr01371.

    Article  Google Scholar 

  • Luo, S. Q., X. W. Fang, S. H. Lyu, et al., 2017: Interdecadal changes in the freeze depth and period of frozen soil on the Three Rivers Source Region in China from 1960 to 2014. Adv. Meteor., 2017, 5931467, doi: 10.1155/2017/5931467.

    Google Scholar 

  • Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2010: Technical Description of Version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, doi: 10.5065/D6FB50WZ.

    Google Scholar 

  • Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2013: Technical Description of Version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503+STR, 420 pp, doi: 10.5065/D6RR1W7M.

    Google Scholar 

  • Peter-Lidard, C. D., E. Blackrurn, X. Liang, et al., 1998: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55, 1209–1224, doi: 10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2.

    Article  Google Scholar 

  • Shang, L. Y., Y. Zhang, S. H. Lü, et al., 2015: Energy exchange of an alpine grassland on the eastern Qinghai–Tibetan Plateau. Sci. Bull., 60, 435–446, doi: 10.1007/s11434-014-0685-8.

    Article  Google Scholar 

  • Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Sys., 4, 2001, doi: 10.1029/2011MS000072.

    Article  Google Scholar 

  • Sun, S. F., 2005: Physical, Biochemical Mechanism and Parametric Model of Land Surface Processes. China Meteorological Press, Beijing, 84 pp. (in Chinese)

    Google Scholar 

  • Swenson, S. C., and D. M. Lawrence, 2012: A new fractional snow-covered area parameterization for the community land model and its effect on the surface energy balance. J. Geophys. Res., 117, D21107, doi: 10.1029/2012JD018178.

    Article  Google Scholar 

  • Swenson, S. C., D. M. Lawrence, and H. Lee, 2012: Improved simulation of the terrestrial hydrological cycle in permafrost regions by the community land model. J. Adv. Model. Earth Sys., 4, M8002, doi: 10.1029/2012MS000165.

    Google Scholar 

  • Wang, C. H., R. Shi, and H. C. Zuo, 2008: Analysis on simulation of characteristic of land surface in western Qinghai–Xizang Plateau during frozen and thawing. Plateau Meteor., 27, 239–248. (in Chinese)

    Google Scholar 

  • Wang, C., Z. G. Wei, Z. C. Li, et al., 2017: Testing and improving the performance of the Common Land Model: A case study for the Gobi landscape. J. Meteor. Res., 31, 625–632, doi: 10.1007/s13351-017-6080-z.

    Article  Google Scholar 

  • Wang, S. Y., Y. Zhang, S. H. Lü, et al., 2016: Biophysical regulation of carbon fluxes over an alpine meadow ecosystem in the eastern Tibetan Plateau. Int. J. Biometeor., 60, 801–812, doi: 10.1007/s00484-015-1074-y.

    Article  Google Scholar 

  • Wang, X. J., M. X. Yang, G. J. Pang, et al., 2015: Simulation and improvement of land surface processes in nameqie, central Tibetan Plateau, using the community land model (CLM3.5). Environ. Earth Sci., 73, 7343–7357, doi: 10.1007/s12665-014-3911-4.

    Article  Google Scholar 

  • Xiong, J. S., Y. Zhang, S. Y. Wang, et al., 2014: Influence of soil moisture transmission scheme improvement in CLM4.0 on simulation of land surface process in Qinghai–Xizang Plateau. Plateau Meteor., 33, 323–336. (in Chinese)

    Google Scholar 

  • Xue, X., J. Guo, B. S. Han, et al., 2009: The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau. Geomorphology, 108, 182–190, doi: 10.1016/j.geomorph.2009.01.004.

    Article  Google Scholar 

  • Yang, K., T. Koike, H. Ishikawa, et al., 2004: Analysis of the surface energy budget at a site of Game/Tibet using a singlesource model. J. Meteor. Soc. Japan, 82, 131–153, doi: 10.2151/jmsj.82.131.

    Article  Google Scholar 

  • Yang, K., Y. Y. Chen, and J. Qin, 2009: Some practical notes on the land surface modeling in the Tibetan Plateau. Hydr. Earth Sys. Sci., 13, 687–701, doi: 10.5194/hess-13-687-2009.

    Article  Google Scholar 

  • Yang, M. X., T. D. Yao, X. H. Gou, et al., 2007: Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chinese Sci. Bull., 52, 136–139, doi: 10.1007/s11434-007-0004-8.

    Article  Google Scholar 

  • Yi, S. H., M. A. Arain, and M. K. Woo, 2006: Modifications of a land surface scheme for improved simulation of ground freeze–thaw in northern environments. Geophys. Res. Lett., 33, L13501, doi: 10.1029/2006GL026340.

    Article  Google Scholar 

  • Yi, S., N. Li, B. Xiang, et al., 2013: Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai–Tibetan Plateau. J. Geophys. Res., 118, 1186–1199, doi: 10.1002/jgrg.20093.

    Article  Google Scholar 

  • Yi, S., K. Wischnewski, M. Langer, et al., 2014: Freeze/thaw processes in complex permafrost landscapes of northern Siberia simulated using the tem ecosystem model: Impact of thermokarst ponds and lakes. Geosci. Model Dev., 7, 1671–1689, doi: 10.5194/gmd-7-1671-2014.

    Article  Google Scholar 

  • Zheng, D. H., R. van der Velde, Z. B. Su, et al., 2015: Augmentations to the noah model physics for application to the yellow river source area. Part I: Soil water flow. J. Hydrometeor., 16, 2659–2676, doi: 10.1175/JHM-D-14-0198.1.

    Article  Google Scholar 

  • Zheng, J. Y., Y. H. Yin, and B. Y. Li, 2010: A new scheme for climate regionalization in China. Acta Geogr. Sinica, 65, 3–12. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The observation data were provided by the Zoige Alpine Wetlands Ecosystem Research Station and the Madoi Grassland Station. We acknowledge computing resources and time at the Super-computing Center, Big Data Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. Special thanks are given to the anonymous reviewers and the editor for their very constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqiong Luo.

Additional information

Supported by the National Natural Science Foundation of China (91537104, 41375077, 91537106, and 91537214).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Fang, X., Lyu, S. et al. Improving CLM4.5 simulations of land–atmosphere exchange during freeze–thaw processes on the Tibetan Plateau. J Meteorol Res 31, 916–930 (2017). https://doi.org/10.1007/s13351-017-6063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6063-0

Key words

Navigation