Skip to main content
Log in

Preparation of an oil suspension containing ondansetron hydrochloride as a sustained release parenteral formulation

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Ondansetron hydrochloride (ODS) is a selective 5-hydroxytryptamine type 3 antagonist for nausea and emesis prevention in neoplastic patients. To reduce dosing frequency and side effects and improve patient compliance, a sustained release parenteral formulation of ODS was developed. Microparticles of methylcellulose (MC) and ODS were prepared using the spray-drying method and suspended in oils to form oil suspensions. The formulations were evaluated for residual moisture, drug content, size distribution, DSC, XRD, FTIR, SEM, drug release, and pharmacokinetic studies. The effects of polymers and oils on the drug release were evaluated. MC showed the most prominent sustained release effect among various polymers examined with the optimum MC/ODS ratio of 2:1 (w/w). The particle size of the produced microparticles was in the mean diameter of approximately 3 μm. Physicochemical characterization suggested that ODS existed in an amorphous matrix within the microparticles and interacted with MC via hydrogen bonds. Corn oil was selected as the appropriate oil for suspension due to the sustained release of ODS and the appropriate viscosity. The optimized sustained release formulation of ODS was the corn oil suspension of spray-dried microparticles containing MC and ODS (2:1, w/w). It showed an in vitro drug sustained release up to 120 h, while the oil suspension of ODS without any polymer released the drug within 2 h. Following subcutaneous administration in rats, the optimized formulation could prolong the drug release until 72 h with the enhanced bioavailability in comparison with the ODS solution. The oil suspension of spray-dried microparticles might be an efficient approach for prolongation of the drug effect in the management of nausea and emesis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Roila F, Del Favero A. Ondansetron Clinical Pharmacokinetics. Clin Pharmacokinet. 1995;29(2):95–109. https://doi.org/10.2165/00003088-199529020-00004.

    Article  CAS  PubMed  Google Scholar 

  2. Christofaki M, Papaioannou A. Ondansetron: a review of pharmacokinetics and clinical experience in postoperative nausea and vomiting. Expert Opin Drug Metab Toxicol. 2014;10(3):437–44.

    Article  CAS  PubMed  Google Scholar 

  3. Navari RM, Aapro M. Antiemetic Prophylaxis for Chemotherapy-Induced Nausea and Vomiting. N Engl J Med. 2016;374(14):1356–67. https://doi.org/10.1056/NEJMra1515442.

    Article  CAS  PubMed  Google Scholar 

  4. Deeks ED. Granisetron Extended-Release Injection: A Review in Chemotherapy-Induced Nausea and Vomiting. Drugs. 2016;76(18):1779–86. https://doi.org/10.1007/s40265-016-0664-2.

    Article  CAS  PubMed  Google Scholar 

  5. Denge MS, Walde SR, Abhay MI. Development and characterization of transdermal patches of Ondansetron hydrochloride. Int J Pharm Pharm Sci. 2012;4(5):293–8.

    CAS  Google Scholar 

  6. Cho E, Gwak H, Chun I. Formulation and evaluation of ondansetron nasal delivery systems. Int J Pharm. 2008;349(1):101–7. https://doi.org/10.1016/j.ijpharm.2007.07.028.

    Article  CAS  PubMed  Google Scholar 

  7. Duong V-A, Nguyen T-T-L, Maeng H-J, Chi S-C. Nanostructured lipid carriers containing ondansetron hydrochloride by cold high-pressure homogenization method: Preparation, characterization, and pharmacokinetic evaluation. J Drug Deliv Sci Technol. 2019;53:101185. https://doi.org/10.1016/j.jddst.2019.101185.

    Article  CAS  Google Scholar 

  8. Ottoboni T, Gelder MS, O’Boyle E. Biochronomer™ technology and the development of APF530, a sustained release formulation of granisetron. J Exp Pharmacol. 2014;6:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim SJ, Hahn SK, Kim MJ, Kim DH, Lee YP. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Control Release. 2005;104(2):323–35. https://doi.org/10.1016/j.jconrel.2005.02.012.

    Article  CAS  PubMed  Google Scholar 

  10. Cai Y, Xu M, Yuan M, Liu Z, Yuan W. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes. Int J Nanomedicine. 2014;9:3527–38. https://doi.org/10.2147/IJN.S63507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho J-R, Van Duong A, Nguyen LTT, Chi S-C. Design of transdermal matrix patch containing ondansetron. J Pharm Investig. 2016;46(7):677–84. https://doi.org/10.1007/s40005-016-0273-9.

    Article  CAS  Google Scholar 

  12. Jain A, Kaur R, Beg S, Kushwah V, Jain S, Singh B. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv Transl Res. 2018;8(3):670–92. https://doi.org/10.1007/s13346-018-0514-8.

    Article  CAS  PubMed  Google Scholar 

  13. Suryawanshi SR, Thakare NP, More DP, Thombre NA. Bioavailability enhancement of ondansetron after nasal administration of Caesalpinia pulcherrima-based microspheres. Drug Delivery. 2015;22(7):894–902. https://doi.org/10.3109/10717544.2013.860205.

    Article  CAS  PubMed  Google Scholar 

  14. Umadevi SK, Thiruganesh R, Suresh S, Reddy KB. Formulation and evaluation of chitosan microspheres of aceclofenac for colon-targeted drug delivery. Biopharm Drug Dispos. 2010;31(7):407–27. https://doi.org/10.1002/bdd.722.

    Article  CAS  PubMed  Google Scholar 

  15. Duong V-A, Nguyen T-T-L, Maeng H-J, Chi S-C. Preparation of Ondansetron Hydrochloride-Loaded Nanostructured Lipid Carriers Using Solvent Injection Method for Enhancement of Pharmacokinetic Properties. Pharm Res. 2019;36(10):138. https://doi.org/10.1007/s11095-019-2672-x.

    Article  CAS  PubMed  Google Scholar 

  16. Hahn SK, Kim SJ, Kim MJ, Kim DH. Characterization and In Vivo Study of Sustained-Release Formulation of Human Growth Hormone Using Sodium Hyaluronate. Pharm Res. 2004;21(8):1374–81. https://doi.org/10.1023/B:PHAM.0000036910.41224.de.

    Article  CAS  PubMed  Google Scholar 

  17. Yu LX, Foster TP, Sarver RW, Moseley WM. Preparation, characterization, and in vivo evaluation of an oil suspension of a bovine growth hormone releasing factor analog. J Pharm Sci. 1996;85(4):396–401. https://doi.org/10.1021/js9503901.

    Article  CAS  PubMed  Google Scholar 

  18. Esposito E, Roncarati R, Cortesi R, Cervellati F, Nastruzzi C. Production of Eudragit Microparticles by Spray-Drying Technique: Influence of Experimental Parameters on Morphological and Dimensional Characteristics. Pharm Dev Technol. 2000;5(2):267–78. https://doi.org/10.1081/PDT-100100541.

    Article  CAS  PubMed  Google Scholar 

  19. Hou A, Li L, Huang Y, Singh V, Zhu C, Pan X, et al. Fragmented particles containing octreotide acetate prepared by spray drying technique for dry powder inhalation. Drug Deliv Transl Res. 2018;8(3):693–701. https://doi.org/10.1007/s13346-018-0515-7.

    Article  CAS  PubMed  Google Scholar 

  20. Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, et al. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res. 2018;41(2):111–29. https://doi.org/10.1007/s12272-017-0995-x.

    Article  CAS  PubMed  Google Scholar 

  21. Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi H-G, Yong CS, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release. 2017;258:226–53. https://doi.org/10.1016/j.jconrel.2017.04.043.

    Article  CAS  PubMed  Google Scholar 

  22. Lu X, Fang M, Yang Y, Dai Y, Xu J, Zhao D, et al. PEG-conjugated triacontanol micelles as docetaxel delivery systems for enhanced anti-cancer efficacy. Drug Deliv Transl Res. 2019:1–14. https://doi.org/10.1007/s13346-019-00667-6.

  23. Chen KTJ, Anantha M, Leung AWY, Kulkarni JA, Militao GGC, Wehbe M, et al. Characterization of a liposomal copper(II)-quercetin formulation suitable for parenteral use. Drug Deliv Transl Res. 2019:1–14. https://doi.org/10.1007/s13346-019-00674-7.

  24. Maithania HV, Mohanty BS, Chaudhari PR, Samad A, Devarajan PV. Shape mediated splenotropic delivery of buparvaquone loaded solid lipid nanoparticles. Drug Deliv Transl Res. 2019:1–9. https://doi.org/10.1007/s13346-019-00670-x.

  25. Rattes ALR, Oliveira WP. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technol. 2007;171(1):7–14. https://doi.org/10.1016/j.powtec.2006.09.007.

    Article  CAS  Google Scholar 

  26. Al-Zoubi N, AlKhatib HS, Bustanji Y, Aiedeh K, Malamataris S. Sustained-release of buspirone HCl by co spray-drying with aqueous polymeric dispersions. Eur J Pharm Biopharm. 2008;69(2):735–42. https://doi.org/10.1016/j.ejpb.2008.01.002.

    Article  CAS  PubMed  Google Scholar 

  27. Payne C, Dolan EB, O’Sullivan J, Cryan S-A, Kelly HM. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro. Drug Deliv Transl Res. 2017;7(1):132–46. https://doi.org/10.1007/s13346-016-0347-2.

    Article  CAS  PubMed  Google Scholar 

  28. Jamard M, Hoare T, Sheardown H. Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery. Drug Deliv Transl Res. 2016;6(6):648–59. https://doi.org/10.1007/s13346-016-0337-4.

    Article  CAS  PubMed  Google Scholar 

  29. Sarkar N. Structural interpretation of the interfacial properties of aqueous solutions of methylcellulose and hydroxypropyl methylcellulose. Polymer. 1984;25(4):481–6. https://doi.org/10.1016/0032-3861(84)90206-4.

    Article  CAS  Google Scholar 

  30. Zhang M, Yang B, Liu W, Li S. Influence of hydroxypropyl methylcellulose, methylcellulose, gelatin, poloxamer 407 and poloxamer 188 on the formation and stability of soybean oil-in-water emulsions. Asian J Pharm Sci. 2017;12(6):521–31. https://doi.org/10.1016/j.ajps.2017.05.009.

    Article  Google Scholar 

  31. Gullapalli RP, Sheth BB. Effect of methylcellulose on the stability of oil-in-water emulsions. Int J Pharm. 1996;140(1):97–109. https://doi.org/10.1016/0378-5173(96)04591-7.

    Article  CAS  Google Scholar 

  32. Zhang Y, Gao C, Li X, Xu C, Zhang Y, Sun Z, et al. Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion. Carbohydr Polym. 2014;101:171–8. https://doi.org/10.1016/j.carbpol.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JK, Yoo C, Cha Y-H, Kim Y-H. Thermo-reversible injectable gel based on enzymatically-chopped low molecular weight methylcellulose for exenatide and FGF 21 delivery to treat types 1 and 2 diabetes. J Control Release. 2014;194:316–22. https://doi.org/10.1016/j.jconrel.2014.09.014.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S, Chen J, Yin X, Wang X, Qiu B, Zhu L, et al. Microencapsulation of tea tree oil by spray-drying with methyl cellulose as the emulsifier and wall material together with chitosan/alginate. J Appl Polym Sci. 2017;134(13). https://doi.org/10.1002/app.44662.

  35. Higuchi T, Connors K. Phase-solubility techniques. In: Reilly C, editor. Advances in Analytical Chemistry and Instrumentation. NewYork: Wiley-Interscience; 1965. p. 117–212.

    Google Scholar 

  36. Weng Larsen S, Larsen C. Critical Factors Influencing the In Vivo Performance of Long-acting Lipophilic Solutions—Impact on In Vitro Release Method Design. AAPS J. 2009;11(4):762–70. https://doi.org/10.1208/s12248-009-9153-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fredholt K, Larsen DH, Larsen C. Modification of in vitro drug release rate from oily parenteral depots using a formulation approach. Eur J Pharm Sci. 2000;11(3):231–7. https://doi.org/10.1016/S0928-0987(00)00104-4.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu Y, Zhang Q, Zou J, Wan M, Zhao Z, Zhu J. Pharmacokinetics and bioavailability study of two ondansetron oral soluble film formulations in fasting healthy male Chinese volunteers. Drug Des Devel Ther. 2015;9:4621.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Durrigl M, Kwokal A, Hafner A, Segvic Klaric M, Dumicic A, Cetina-Cizmek B, et al. Spray dried microparticles for controlled delivery of mupirocin calcium: Process–tailored modulation of drug release. J Microencapsul. 2011;28(2):108–21. https://doi.org/10.3109/02652048.2010.535620.

    Article  CAS  PubMed  Google Scholar 

  40. Kemp IC, Wadley R, Hartwig T, Cocchini U, See-Toh Y, Gorringe L, et al. Experimental Study of Spray Drying and Atomization with a Two-Fluid Nozzle to Produce Inhalable Particles. Dry Technol. 2013;31(8):930–41. https://doi.org/10.1080/07373937.2012.710693.

    Article  CAS  Google Scholar 

  41. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010;12(3):263–71. https://doi.org/10.1208/s12248-010-9185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Joshi AS, Patel HS, Belgamwar VS, Agrawal A, Tekade AR. Solid lipid nanoparticles of ondansetron HCl for intranasal delivery: development, optimization and evaluation. J Mater Sci Mater Med. 2012;23(9):2163–75. https://doi.org/10.1007/s10856-012-4702-7.

    Article  CAS  PubMed  Google Scholar 

  43. Bhatt S, Trivedi P. Taste masking of Ondansetron Hydrochloride and formulation of fast dissolving tablets. J Chem Pharm Res. 2011;3(4):472–84.

    CAS  Google Scholar 

  44. Rassu G, Gavini E, Spada G, Giunchedi P, Marceddu S. Ketoprofen Spray-dried Microspheres Based on Eudragit® RS and RL: Study of the Manufacturing Parameters. Drug Dev Ind Pharm. 2008;34(11):1178–87. https://doi.org/10.1080/03639040801974303.

    Article  CAS  PubMed  Google Scholar 

  45. Kristmundsdóttir T, Gudmundsson ÓS, Ingvarsdóttir K. Release of diltiazem from Eudragit microparticles prepared by spray-drying. Int J Pharm. 1996;137(2):159–65. https://doi.org/10.1016/0378-5173(96)04509-7.

    Article  Google Scholar 

  46. Park J-M, Park S-J. Preparation and characterization of water-soluble microcapsule for sustained drug release using Eudragit RS 100. Macromol Res. 2010;18(12):1191–4. https://doi.org/10.1007/s13233-010-1203-8.

    Article  CAS  Google Scholar 

  47. Oliveira RL, Vieira JG, Barud HS, Assunção RMN, Filho RG, Ribeiro SJL, et al. Synthesis and Characterization of Methylcellulose Produced from Bacterial Cellulose under Heterogeneous Condition. J Braz Chem Soc. 2015;26:1861–70. https://doi.org/10.5935/0103-5053.20150163.

    Article  CAS  Google Scholar 

  48. Bhoyar PK, Biyani DM, Umekar MJ. Formulation and Characterization of Patient-Friendly Dosage Form of Ondansetron Hydrochloride. J Young Pharm. 2010;2(3):240–6. https://doi.org/10.4103/0975-1483.66796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larsen SW, Thing MA, Larsen C. Oily (lipophilic) solutions and suspensions. In: Wright JC, Burgess DJ, editors. Long Acting Injection and Implants. New York: Springer; 2012. p. 113–35.

    Chapter  Google Scholar 

  50. Adams S, Frith W, Stokes J. Influence of particle modulus on the rheological properties of agar microgel suspensions. J Rheol. 2004;48(6):1195–213.

    Article  CAS  Google Scholar 

  51. Karimi K, Katona G, Csóka I, Ambrus R. Physicochemical stability and aerosolization performance of dry powder inhalation system containing ciprofloxacin hydrochloride. J Pharm Biomed Anal. 2018;148(Supplement C):73–9. https://doi.org/10.1016/j.jpba.2017.09.019.

    Article  CAS  PubMed  Google Scholar 

  52. Learoyd TP, Burrows JL, French E, Seville PC. Modified release of beclometasone dipropionate from chitosan-based spray-dried respirable powders. Powder Technol. 2008;187(3):231–8. https://doi.org/10.1016/j.powtec.2008.02.015.

    Article  CAS  Google Scholar 

  53. Salama AH. Spray drying as an advantageous strategy for enhancing pharmaceuticals bioavailability. Drug Deliv Transl Res. 2019:1–12. https://doi.org/10.1007/s13346-019-00648-9.

  54. Nguyen T-T, Yi E-J, Hwang K-M, Cho C-H, Park C-W, Kim J-Y, et al. Formulation and evaluation of carrier-free dry powder inhaler containing sildenafil. Drug Deliv Transl Res. 2019;9(1):319–33. https://doi.org/10.1007/s13346-018-0586-5.

    Article  CAS  PubMed  Google Scholar 

  55. Huang Y, Huang Z, Zhang X, Zhao Z, Zhang X, Wang K, et al. Chitosan-based binary dry powder inhaler carrier with nanometer roughness for improving in vitro and in vivo aerosolization performance. Drug Deliv Transl Res. 2018;8(5):1274–88. https://doi.org/10.1007/s13346-018-0564-y.

    Article  CAS  PubMed  Google Scholar 

  56. Anandharamakrishnan C, Padma IS. Introduction to spray drying. In: Anandharamakrishnan C, Padma IS, editors. Spray Drying Techniques for Food Ingredient Encapsulation. 1st ed. Chichester: Wiley; 2015. p. 1–36.

    Chapter  Google Scholar 

  57. Vehring R. Pharmaceutical Particle Engineering via Spray Drying. Pharm Res. 2008;25(5):999–1022. https://doi.org/10.1007/s11095-007-9475-1.

    Article  CAS  Google Scholar 

  58. Rizi K, Green RJ, Donaldson M, Williams AC. Production of pH-Responsive Microparticles by Spray Drying: Investigation of Experimental Parameter Effects on Morphological and Release Properties. J Pharm Sci. 2011;100(2):566–79. https://doi.org/10.1002/jps.22291.

    Article  CAS  PubMed  Google Scholar 

  59. Quimby JM, Lake RC, Hansen RJ, Lunghofer PJ, Gustafson DL. Oral, subcutaneous, and intravenous pharmacokinetics of ondansetron in healthy cats. J Vet Pharmacol Ther. 2014;37(4):348–53. https://doi.org/10.1111/jvp.12094.

    Article  CAS  PubMed  Google Scholar 

  60. Yang SH, Lee MG. Dose-independent pharmacokinetics of ondansetron in rats: contribution of hepatic and intestinal first-pass effects to low bioavailability. Biopharm Drug Dispos. 2008;29(7):414–26. https://doi.org/10.1002/bdd.628.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to The Catholic University of Korea for helping with the SEM and XRD studies.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Cheol Chi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed. The animal study was approved by Animal Care and Use Committee of Gachon University (No. GIACUC-R2019015).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TTL., Duong, VA., Maeng, HJ. et al. Preparation of an oil suspension containing ondansetron hydrochloride as a sustained release parenteral formulation. Drug Deliv. and Transl. Res. 10, 282–295 (2020). https://doi.org/10.1007/s13346-019-00687-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00687-2

Keywords

Navigation