Skip to main content
Log in

Existence of solutions for a class of heat equations involving the mean curvature operator

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The goal of this paper is to show the existence of a bounded variation solution, which is based on the Anzellotti pairing to an evolution problem associated with the minimal surface equations. A key ingredient in the proof is to approximate the parabolic minimal surface problem by a quasilinear parabolic problem involving a parameter \(p>1\), and then by establishing some energy estimates independent of p, we take the limit as \(p\rightarrow 1^{+}\) to obtain the desired result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

References

  1. Azzollini, A.: On a prescribed mean curvature equation in Lorentz–Minkowski space. J. Math. Pures Appl. (9) 106, 1122–1140 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, In: Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, ISBN: 0-19-850245-1, (2000), xviii+434 pp

  3. Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135(1), 293–318 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  5. Andreu, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functional. Progress in Mathematics, vol. 223. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  6. Bereanu, C., Jebelean, P., Mawhin, J.: The Dirichlet problem with mean curvature operator in Minkowski space–a variational approach. Adv. Nonlinear Stud. 14, 315–326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corsato, C., Obersnel, F., Omari, P., Rivetti, S.: On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Discrete Contin. Dyn. Syst. 2013, 159–169 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Coffman, C.V., Ziemer, W.K.: A prescribed mean curvature problem on domains without radial symmetry. SIAM J. Math. Anal. 22, 982–990 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

    MATH  Google Scholar 

  10. Engler, H., Kawohl, B., Luckhaus, S.: Gradient estimates for solutions of parabolic equations and systems. J. Math. Anal. Appl. 147, 309–329 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ecker, K.: Estimates for Evolutionary surfaces of prescribed mean curvature. Math. Z. 180, 179–192 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Finn, R.: On the equations of capillarity. J. Math. Fluid Mech. 3, 139–151 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Finn, R.: Capillarity problems for compressible fluids. Mem. Differ. Equ. Math. Phys. 33, 47–55 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Finn, R., Luli, G.: On the capillary problem for compressible fluids. J. Math. Fluid Mech. 9, 87–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Boston/Basel/Stuttgart (1984)

    Book  MATH  Google Scholar 

  16. Gerhardt, C.: Evolutionary surfaces of prescribed mean curvature. J. Differ. Equ. 36, 139–172 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giga, Y.: Interior derivative blow-up for quasilinear parabolic equations. Discrete Contin. Dyn. Syst. 1, 449–461 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kinnunen, J., Scheven, C.: On the definition of solution to the total variation flow, arXiv:2106.05711 [math.AP]

  19. Kawohl, B., Kutev, N.: Global behaviour of solutions to a parabolic mean curvature equation. Differ. Integral Equ. 8, 1923–1946 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Kawohl, B., Kutev, N.: Global behaviour of solutions to a parabolic mean curvature equation. Differ. Integral Equ. 8, 1923–1946 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Lopéz, R.: An existence theorem of constant mean curvature graphs in Euclidean space. Glasg. Math. J. 44, 455–461 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Lichnewsky, A., Temam, R.: Pseudosolutions of the time-dependent minimal surface problem. J. Differ. Equ. 30, 340–364 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux limites non linéaires. Dounod, Paris (1969)

    MATH  Google Scholar 

  24. Lieberman, G.M.: Interior Gradient bounds for non-uniformly parabolic equations. Indiana Univ. Math. J. 32, 579–601 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marcellini, P., Miller, K.: Asymptotic growth for the parabolic equation of prescribed mean curvature. J. Differ. Equ. 51, 326–358 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marcellini, P., Miller, K.: Elliptic versus parabolic regularization for the equation of prescribed mean curvature. J. Differ. Equ. 137(1), 1–53 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakao, M., Ohara, Y.: Gradient estimates for a quasilinear parabolic equation of the mean curvature type. J. Math. Soc. Jpn. 48, 455–466 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nakao, M., Chen, C., Ohara, Y.: Global existence and gradient estimates for a quasilinear parabolic equation of the mean curvature type with a strong perturbation. Differ. Integral Equ. 14(1), 59–74 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Pimenta, M.T.O., Montenegro, M.: Existence of a BV solution for a mean curvature equation. J. Differ. Equ. 299, 51–64 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robinson, J.C.: Infinite-Dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  31. Showalter, E.R.: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. (Mathematical Surveys and Monographs), vol. 49. American Mathematical Society, Providence (1997)

  32. Simon, J.: Compact sets in the space \(L^{p}(0, T, B)\). Ann. Math. Pura. Appl. (4) 146, 65–96 (1987)

    Article  MATH  Google Scholar 

  33. Scheven, C., Schmidt, T.: On the dual formulation of obstacle problems for the total variation and the area functional. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, 1175–1207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Scheven, C., Schmidt, T.: BV supersolutions to equations of 1-Laplace and minimal surface type. J. Differ. Equ. 261(3), 1904–1932 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Serrin, J.: The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. R. Soc. Lond. Ser. A 264, 413–496 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  36. Trudinger, N.S.: Gradient estimates and mean curvature. Math. Z. 131, 165–175 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  37. Temam, R.: Applications de l’analyse convexe au calcul des variations. In: Gossez, J.P., et al. (eds.) Les Opérateurs Non-Linéaires et le Calcul de Variation. Lecture Notes in Mathematics, vol. 543. Springer, Berlin (1976)

  38. Ziemer, W.P.: Weakly Differentiable Functions, GTM 120. Springer, Berlin (1989)

    Book  Google Scholar 

  39. Zheng, S.: Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and surveys in Pure and Applied Mathematics, vol. 133. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

Download references

Funding

Funding information is not applicable/No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

CA and TB wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tahir Boudjeriou.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Boudjeriou, T. Existence of solutions for a class of heat equations involving the mean curvature operator. Anal.Math.Phys. 13, 13 (2023). https://doi.org/10.1007/s13324-022-00774-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00774-7

Navigation