Skip to main content
Log in

Ground state solutions for Kirchhoff-type problems with convolution nonlinearity and Berestycki–Lions type conditions

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the following Kirchhoff-type problem with convolution nonlinearity

$$\begin{aligned} -\left( 1+ b\int _{ \mathbb {R}^{3}}|\nabla u|^{2} dx \right) \triangle u+ V(x)u=(I_{\alpha }*F(u))f( u),~x\in \mathbb {R}^{3},~u\in H^{1}(\mathbb {R}^{3}), \end{aligned}$$

where \(b>0\), \(I_{\alpha }:\mathbb {R}^{3}\rightarrow \mathbb {R}\), with \(\alpha \in (0,3)\), is the Riesz potential, V is differentiable, \(f\in \mathbb {C}(\mathbb {R},\mathbb {R})\) and \(F(t)=\int ^{t}_{0}f(s)ds\). Let f satisfies some relatively weak conditions in the absence of the usual Ambrosetti-Rabinowitz or monotonicity conditions. We get two classes of ground state solutions under the general “Berestycki–Lions conditions” on the nonlinearity f and we also give a minimax characterization of the ground state energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arosio, A., Panizzi, S.: On the well-posedness of Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)

    Article  MathSciNet  Google Scholar 

  2. Azzollini, A.: The elliptic Kirchhoff equation in \({\mathbb{R}}^{N}\) perturbed by a local nonlinearity. Differ. Integral Equ. 25, 543–554 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Lions, P.: Nonlinear scalar field equations, I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  4. Brézis, H., Lieb, H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  5. Chen, S., Tang, X.: Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. 9, 148–167 (2020)

    Article  MathSciNet  Google Scholar 

  6. Chen, S., Tang, X.: Berestycki-Lions conditions on ground state solutions for Kirchhoff-type problems with variable potentials. J. Math. Phys. 60, 121509 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chen, S., Tang, X.: Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. (2020). https://doi.org/10.1007/s13398-019-00775-5

  8. Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997)

    Article  MathSciNet  Google Scholar 

  9. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  10. Gu, G., Tang, X.: The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity. Adv. Nonlinear Stud. 19, 779–795 (2019)

    Article  MathSciNet  Google Scholar 

  11. Guo, Z.: Ground states for Kirchhoff equations without compact condition. J. Differ. Equ. 259, 2884–2902 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hu, D., Tang, X., Zhang, Q.: Existence of ground state solutions for Kirchhoff-type problem with variable potential. Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1947499

    Article  Google Scholar 

  13. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^{3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  Google Scholar 

  14. Jeanjean, L., Toland, J.: Bounded Palais-Smale mountain-pass sequences. C. R. Acad. Sci. Paris Sér. I Math. 327, 23–28 (1998)

  15. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on \({\mathbb{R}}^{N}\). Proc. R. Soc. Edinb. Sect. A 129, 787–809 (1999)

    Article  Google Scholar 

  16. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  17. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}}^{3}\). J. Differ. Equ. 257, 566–600 (2014)

    Article  Google Scholar 

  18. Lü, D.: Existence and concentration of ground state solutions for singularly perturbed nonlocal elliptic problems. Monatsh Math. 182, 335–358 (2017)

    Article  MathSciNet  Google Scholar 

  19. Lü, D.: A note on Kirchhoff-type equations with Hartree-type nonlinearities. Nonlinear Anal. 99, 35–48 (2014)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Li, X., Ma, S.: Groundstates for Kirchhoff-type equations with Hartree-type nonlinearities. Results Math. (2019). https://doi.org/10.1007/s00025-018-0943-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, H.: Ground state solutions of Pohožaev type and Nehari type for a class of nonlinear Choquard equations. J. Math. Anal. Appl. 467, 842–862 (2018)

    Article  MathSciNet  Google Scholar 

  22. Lions, P.: The concentration-compactness principle in the calculus of variation. The locally compact case. Part II. Ann Inst H Poincaré Anal Non Linéaire. 1, 223–283 (1984)

  23. Lions, P.: The concentration-compactness principle in the calculus of variation. The locally compact case. Part I. Ann Inst H Poincaré Anal Non Linéaire. 1, 109–145 (1984)

  24. Moroz, V., Van, S.: Existence of groundstate for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  Google Scholar 

  25. Moroz, V., Van, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  26. Sun, J., Wu. T.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ. Equ. 256, 1771–1792 (2014)

  27. Tang, X., Chen, S.: Ground STSTE solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Diffe. Equ. 56, 110–134 (2017)

    Article  Google Scholar 

  28. Tang, X., Chen, S.: Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki–Lions assumptions (2019). arXiv:1903.10347

  29. Van, J., Xia, J.: Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent. J. Math. Anal. Appl. 464, 1184–1202 (2018)

    Article  MathSciNet  Google Scholar 

  30. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston Inc., Boston (1996)

    Google Scholar 

  31. Xia, J., Zhang, X.: Saddle solutions for the critical Choquard equation. Calc. Var. Partial Differ. Equ. (2021). https://doi.org/10.1007/s00526-021-01919-5

  32. Zhang, Q., Hu, D.: Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Complex Var. Elliptic Equ. (2021). https://doi.org/10.1080/17476933.2021.1916918

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first author mainly completes the writing of the paper. The second author mainly gives ideas of this paper. The third and fourth author mainly revised the paper.

Corresponding author

Correspondence to Xianhua Tang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Availability statement of data

Data transparency.

Code availability

Custom Code.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Tang, X., Yuan, S. et al. Ground state solutions for Kirchhoff-type problems with convolution nonlinearity and Berestycki–Lions type conditions. Anal.Math.Phys. 12, 19 (2022). https://doi.org/10.1007/s13324-021-00629-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00629-7

Keywords

Mathematics Subject Classification

Navigation