Skip to main content
Log in

\({\mathbb {L}}^p\)-solutions of deterministic and stochastic convective Brinkman–Forchheimer equations

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the first part of this work, we establish the existence and uniqueness of a local mild solution to deterministic convective Brinkman–Forchheimer (CBF) equations defined on the whole space, by using properties of the heat semigroup and fixed point arguments based on an iterative technique. Moreover, we prove that the solution exists globally. The second part is devoted for establishing the existence and uniqueness of a pathwise mild solution upto a random time to the stochastic CBF equations perturbed by Lévy noise by exploiting the contraction mapping principle. Then by using stopping time arguments, we show that the pathwise mild solution exists globally. We also discuss the local and global solvability of the stochastic CBF equations forced by fractional Brownian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Let \({\mathbb {U}}\) be a real separable Hilbert space and \({\mathbb {X}}\) be a Banach space. A bounded linear operator \(R\in {\mathcal {L}}({\mathbb {U}},{\mathbb {X}})\) is \(\gamma \)-radonifying provided that there exists a centered Gaussian probability \(\nu \) on \({\mathbb {X}}\) such that \(\int _{{\mathbb {X}}}\varphi (x)\mathrm {d}\nu (x)=\Vert R^*\varphi \Vert _{{\mathbb {U}}},\ \varphi \in {\mathbb {X}}'\). Such a measure is at most one, and hence we set \(\Vert R\Vert _{\gamma ({\mathbb {U}},{\mathbb {X}})}^2:=\int _{{\mathbb {X}}}\Vert x\Vert _{{\mathbb {X}}}^2\mathrm {d}\nu (x).\) We denote \(\gamma ({\mathbb {U}};{\mathbb {X}})\) for the space of \(\gamma \)-radonifying operators, and \(\gamma ({\mathbb {U}},{\mathbb {X}})\) equipped with the norm \(\Vert \cdot \Vert _{\gamma ({\mathbb {U}},{\mathbb {X}})}\) is a separable Banach space.

References

  1. Alós, E., Nualart, D.: Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75, 129–152 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bessaih, H., Millet, A.: On stochastic modified 3D Navier–Stokes equations with anisotropic viscosity. J. Math. Anal. Appl. 462, 915–956 (2018)

    Article  MathSciNet  Google Scholar 

  3. Brzeźniak, Z., Long, H.: A note on \(\gamma \)-radonifying and summing operators. Stoch. Anal. 105, 43–57 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Brzeźniak, Z., Dhariwal, G.: Stochastic tamed Navier–Stokes equations on \({\mathbb{R}}^3\): the existence and the uniqueness of solutions and the existence of an invariant measure. J. Math. Fluid Mech. 22, 1–54 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cai, Z., Jiu, Q.: Weak and Strong solutions for the incompressible Navier–Stokes equations with damping. J. Math. Anal. Appl. 343, 799–809 (2008)

    Article  MathSciNet  Google Scholar 

  6. Clarke, J., Olivera, C.: Local \(L^p\)-solution for semilinear heat equation with fractional noise. arXiv:1902.06084

  7. Coupek, P., Maslowski, B., Ondrejat, M.: \(L^p\)-valued stochastic convolution integral driven by Volterra noise. Stoch. Dyn. 18(6), 1850048 (2018)

    Article  MathSciNet  Google Scholar 

  8. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)

  9. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  10. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, vol. 229. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  11. Dong, Z., Zhang, R.: 3D tamed Navier–Stokes equations driven by multiplicative Lévy noise: existence, uniqueness and large deviations. J. Math. Anal. Appl. 492(1), 124404 (2020)

    Article  MathSciNet  Google Scholar 

  12. Duncan, T.E., Pasik-Duncan, B., Maslowski, B.: Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch. Dyn. 2, 225–250 (2002)

    Article  MathSciNet  Google Scholar 

  13. Fabes, E.B., Jones, B.F., Riviere, N.M.: The Initial value problem for the Navier–Stokes equations with data in \({\mathbb{L}}^p\). Arch. Ration. Mech. Anal. 45, 222–240 (1972)

    Article  Google Scholar 

  14. Fang, L., Sundar, P., Viens, F.G.: Two-dimensional stochastic Navier–Stokes equations with fractional Brownian noise. Random Oper. Stoch. Equ. 21(2), 135–158 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fernando, B.P.W., Rüdiger, B., Sritharan, S.S.: Mild solutions of stochastic Navier–Stokes equation with jump noise in \({\mathbb{L}}^p\)-spaces. Math. Nachr. 288, 1615–1621 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ferrario, B., Olivera, C.: \(L^p\)-solutions of the Navier–Stokes equation with fractional Brownian noise. AIMS Math. 3(44), 539–553 (2018)

    Article  Google Scholar 

  17. Giga, Y., Miyakawa, T.: Solutions in \({\mathbb{L}}^{r}\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)

    Article  Google Scholar 

  18. Hajduk, K.W., Robinson, J.C.: Energy equality for the 3D critical convective Brinkman–Forchheimer equations. J. Differ. Equ. 263, 7141–7161 (2017)

    Article  MathSciNet  Google Scholar 

  19. Hausenblas, E., Razafimandimby, P.A.: Existence of a density of the 2-dimensional stochastic Navier Stokes equation driven by Lévy processes or fractional Brownian motion. Stoch. Process. Appl. 130(7), 4174–4205 (2020)

    Article  Google Scholar 

  20. Issoglio, E., Riedle, M.: Cylindrical fractional Brownian motion in Banach spaces. Stoch. Process. Appl. 124(11), 3507–3534 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kato, T.: Strong \({\mathbb{L}}^{p}\)-solutions of the Navier–Stokes equation in \({\mathbb{R}}^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  22. Kolmogorov, A.N.: Wienerische Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Dokl.) Acad. URSS (N.S.) 26, 115–118 (1940)

    MATH  Google Scholar 

  23. Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differ. Equ. 254, 725–755 (2013)

    Article  MathSciNet  Google Scholar 

  24. Liu, W.: Well-posedness of stochastic partial differential equations with Lyapunov condition. J. Differ. Equ. 255, 572–592 (2013)

    Article  MathSciNet  Google Scholar 

  25. Majdoub, M., Mliki, E.: Well-posedness for Hardy–Hénon parabolic equations with fractional Brownian noise. Anal. Math. Phys. 11, 20 (2021)

    Article  Google Scholar 

  26. Markowich, P.A., Titi, E.S., Trabelsi, S.: Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model. Nonlinearity 29(4), 1292–1328 (2016)

    Article  MathSciNet  Google Scholar 

  27. Mohan, M.T., Sritharan, S.S.: \({\mathbb{L}}^p\)-solutions of the stochastic Navier–Stokes equations subject to Lévy noise with \({\mathbb{L}}^m({\mathbb{R}}^{m})\)-initial data. Evol. Equ. Control Theory 6(3), 409–425 (2017)

    Article  MathSciNet  Google Scholar 

  28. Mohan, M. T.: On convective Brinkman–Forchheimer equations. Submitted

  29. Mohan, M.T.: Stochastic convective Brinkman–Forchheimer equations. Submitted, arXiv:2007.09376

  30. Mohan, M.T.: Mild solutions for the stochastic generalized Burgers-Huxley equation. J. Theor. Probab. (2021). https://doi.org/10.1007/s10959-021-01100-w

    Article  Google Scholar 

  31. Mohan, M.T.: Well-posedness and asymptotic behavior of the stochastic convective Brinkman–Forchheimer equations perturbed by pure jump noise. In: Stochastics and Partial Differential Equations: Analysis and Computations. https://doi.org/10.1007/s40072-021-00207-9

  32. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and its Application, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  33. Pipiras, V., Taqqu, M.: Integration questions related to the fractional Brownian motion. Probab. Theory Relat. Fields 118(2), 251–281 (2001)

    Article  MathSciNet  Google Scholar 

  34. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier–Stokes equation: existence, uniqueness and ergodicity. Probab. Theory Relat. Fields 145, 211–267 (2009)

    Article  MathSciNet  Google Scholar 

  35. Tindel, S., Tudor, C.A., Viens, F.: Stochastic evolution equations with fractional Brownian motion. Probab. Theory Relat. Fields 127(2), 186–204 (2003)

    Article  MathSciNet  Google Scholar 

  36. Tudor, C.A.: Analysis of Variations for Self-similar Processes. A Stochastic Calculus Approach, Springer, Berlin (2013)

    Book  Google Scholar 

  37. Weissler, F.B.: The Navier–Stokes initial value problem in \({\mathbb{L}}^p\). Arch. Ration. Mech. Anal. 74, 219–230 (1980)

    Article  Google Scholar 

  38. Zhang, Z., Wu, X., Lu, M.: On the uniqueness of strong solution to the incompressible Navier–Stokes equations with damping. J. Math. Anal. Appl. 377, 414–419 (2011)

    Article  MathSciNet  Google Scholar 

  39. Zhou, Y.: Regularity and uniqueness for the 3D incompressible Navier–Stokes equations with damping. Appl. Math. Lett. 25, 1822–1825 (2012)

    Article  MathSciNet  Google Scholar 

  40. Zhu, J., Brzeźniak, Z., Liu, W.: Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with application to stochastic quasi-geostrophic equations. SIAM J. Math. Anal. 51(3), 2121–2167 (2019)

    Article  MathSciNet  Google Scholar 

  41. Zhu, J., Brzeźniak, Z., Liu, W.: \({L}^{p}\)-solutions for stochastic Navier–Stokes equations with jump noise. Stat. Probab. Lett. 155, 108563 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

M. T. Mohan would like to thank the Department of Science and Technology (DST), India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110). The author sincerely would like to thank the reviewer for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manil T. Mohan.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, M.T. \({\mathbb {L}}^p\)-solutions of deterministic and stochastic convective Brinkman–Forchheimer equations. Anal.Math.Phys. 11, 164 (2021). https://doi.org/10.1007/s13324-021-00595-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00595-0

Keywords

Mathematics Subject Classification

Navigation