Skip to main content
Log in

Titchmarsh–Weyl theory for vector-valued discrete Schrödinger operators

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop the Titchmarsh–Weyl theory for vector-valued discrete Schrödinger operators. We show that the Weyl m functions associated with these operators are matrix valued Herglotz functions that map complex upper half plane to the Siegel upper half space. We discuss about the Weyl disk and Weyl circle corresponding to these operators by defining these functions on a bounded interval. We also discuss the geometric properties of Weyl disk and find the center and radius of the Weyl disk explicitly in terms of matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acharya, K.R.: A note on multidimensional discrete Schrödinger operators. Nepal Math. Sci. Rep. 34(1), 1–10 (2016)

    Google Scholar 

  2. Behrndt, J., Rohleder, J.: Titchmarsh–Weyl theory for Schrödinger operators on unbounded domains. J. Spectr. Theory 6, 67–87 (2016)

    Google Scholar 

  3. Breimesser, S.V., Pearson, D.B.: Asymptotic value distribution for solutions of the Schrödinger equation. Math. Phys. Anal. Geom. 3, 385–403 (2000)

    Google Scholar 

  4. Clark, S.L., Gesztesy, F.: Weyl–Titchmarsh M-function asymptotics for matrix valued Schrödinger operators. Proc. Lond. Math. Soc. (3) 82(3), 701–72 (2001)

    Google Scholar 

  5. Clark, S.L., Gesztesy, F., Holden, H., Levitan, B.M.: Borg-type theorems for matrix-valued Schrödinger operators. J. Differ. Equ. 167, 181–210 (2000)

    Google Scholar 

  6. Gesztesy, F., Kiselev, A., Makarov, K.A.: Uniqueness results for matrix-valued Schrödinger, Jacobi, and Dirac-type operators. Math. Nachr. 239(240), 103–145 (2002)

    Google Scholar 

  7. Everitt, W.N.: A personal history of the \(m\) coefficient. J. Comput. Appl. Math. 171(1–2), 185–197 (2004)

    Google Scholar 

  8. Gesztesy, F., Rsekanovskii, E.: On matrix-valued Herglotz functions. Math. Machr. 218, 61–138 (2000)

    Google Scholar 

  9. Hellinger, E.: Zur Stieltjesschen Kettenbruchtheorie (German). Math. Ann. 86, 18–22 (1922)

    Google Scholar 

  10. Kozhan, R.: Equivalence classes of block Jacobi matrices. Proc. Am. Math. Soc. 139, 799–805 (2011)

    Google Scholar 

  11. Nevanlinna, R.: Asymptotic Entwicklungen beschränkter Funktionen unddas Stieltjessche Momentenproblem (German). Ann. Acad. Sci. Fenn. A 18(5), 53 (1922)

    Google Scholar 

  12. Remling, C.: The absolutely continuous spectrum of Jacobi Matrices. Ann. Math. 174, 125–171 (2011)

    Google Scholar 

  13. Simon, B.: \(m\)-Functions and the absolutely continuous spectrum of one-dimensional almost periodic Schrödinger operators. In: Differential Equation (Birmingham, Ala., 1983), 519, North-Holland Math. Stud. 92. North-Holland, Amsterdam (1984)

  14. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Latices, Mathematical Monographs and Surveys, vol. 72. American Mathematical Society, Providence (2000)

    Google Scholar 

  15. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I, Second edn. Clarendon Press, Oxford (1962)

    Google Scholar 

  16. Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68(2), 220–269 (1910)

    Google Scholar 

Download references

Acknowledgements

The author sincerely thanks the anonymous referee for going over this manuscripts in detail, and providing valuable remarks and suggestions which improved the paper. This work was partially supported by the Office of Sponsored Research at Embry-Riddle Aeronautical University, Florida (Grant No. ERAU 13256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshav Raj Acharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, K.R. Titchmarsh–Weyl theory for vector-valued discrete Schrödinger operators. Anal.Math.Phys. 9, 1831–1847 (2019). https://doi.org/10.1007/s13324-018-0277-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0277-x

Navigation