Skip to main content
Log in

Recovering functions from the spherical mean transform with data on an ellipse using eigenfunction expansion in elliptical coordinates

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to introduce a new inversion procedure for recovering functions, defined on \(\mathbb R^{2}\), from the spherical mean transform, which integrates functions on a prescribed family \(\Lambda \) of circles, where \(\Lambda \) consists of circles whose centers belong to a given ellipse E on the plane. The method presented here follows the same procedure which was used by Norton (J Acoust Soc Am 67:1266–1273, 1980) for recovering functions in case where \(\Lambda \) consists of circles with centers on a circle. However, at some point we will have to modify the method in [24] by using expansion in elliptical coordinates, rather than spherical coordinates, in order to solve the more generalized elliptical case. We will rely on a recent result obtained by Cohl and Volkmer (J Phys A Math Theor 45:355204, 2012) for the eigenfunction expansion of the Bessel function in elliptical coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovsky, M., Berenstein, C.A., Kuchment, P.: Approximation by spherical waves in Lp-spaces. J. Geom. Anal. 6(3), 365–383 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl. 23, 2089–2102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antipov, Y.A., Estrada, R., Rubin, B.: Inversion formulas for spherical means in constant curvature spaces. J. D’Anal. Math. 118, 623–656 (2012)

    Article  MATH  Google Scholar 

  4. Appledorn, C.R., Fang, Y.R., Kruger, R.A., Liu, P.: Photoacoustic ultrasound (PAUS) reconstruction tomography. Med. Phys. 22, 1605–1609 (1995)

    Article  Google Scholar 

  5. Bleistein, N., Cohen, J.K., Stockwell Jr., J.W.: Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Volume 13 of Interdisciplinary Applied Mathematics. Springer, New York (2001)

    MATH  Google Scholar 

  6. Boisvert, R.F., Clark, C.W., Lozier, D.W., Olver, F.W.J.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  7. Cheney, M.: Tomography problems arising in synthetic aperture radar. In: Radon Transforms and Tomography (South Hadley, MA, 2000), Volume 278 of Contemp. Math., pp. 15–27. Amer. Math. Soc., Providence (2001)

  8. Cheney, M., Nolan, C.J.: Microlocal analysis of synthetic aperture radar imaging. J. Fourier Anal. Appl. 10(2), 133–148 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohl, H.S., Volkmer, H.: Eigenfunction expansions for a fundamental solution of Laplace’s equation on \(\mathbf{R^{3}}\) in parabolic and elliptic cylinder coordinates. J. Phys. A Math. Theor. 45, 355204 (2012)

    Article  MATH  Google Scholar 

  10. De Hoop, M.V.: Microlocal analysis of seismic inverse scattering. In: Inside Out: Inverse Problems and Applications, Volume 47 of Math. Sci. Res. Inst. Publ., pp. 219–296. Cambridge University Press, Cambridge (2003)

  11. Finch, D., Haltmeier, M., Rakesh: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2), 392–412 (2007)

  12. Finch, D., Patch, S., Rakesh: Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35(5), 1213–1240 (2004)

  13. Haltmeier, M.: Exact reconstruction formula for the spherical mean Radon transform on ellipsoids. Inverse Probl. 30(10), 105006 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haltmeier, M.: Inversion of circular means and the wave equation on convex planar domains. Comput. Math. Appl. 65(7), 1025–1036 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haltmeier, M.: Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal. 46(1), 214–232 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, S., Wang, L.V.: Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)

    Article  Google Scholar 

  17. Kunyansky, L.A.: A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Probl. 23, S11–S20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kunyansky, L.A.: Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 23(1), 373–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54(19), R59 (2009)

    Article  Google Scholar 

  20. Linzer, M., Norton, S.J.: Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans. Biomed. Eng. BME–28, 200–202 (1981)

    Google Scholar 

  21. Louis, A.K., Quinto, E.T.: Local tomographic methods in Sonar. In: Colton, D., Engl, H., Louis, A.K., McLaughlin, J., Rundell, W. (eds.) Surveys on Solution Methods for Inverse Problems, pp. 147–154. Springer, Vienna (2000)

  22. Natterer, F.: Photo-acoustic inversion in convex domains. Inverse Probl. Imaging 2, 315–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen, L.V.: A family of inversion formulas for thermoacoustic tomography. Inverse Probl. Imaging 4, 649–675 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Norton, S.J.: Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution. J. Acoust. Soc. Am. 67, 1266–1273 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Palamodov, V.P.: A uniform reconstruction formula in integral geometry. Inverse Probl. 28(6), 065014 (2012)

  26. Salman, Y.: An inversion formula for the spherical mean transform with data on an ellipsoid in two and three dimensions. J. Math. Anal. Appl. 420, 612–620 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xia, J., Yao, J., Wang, L.V.: Photoacoustic tomography: principles and advances. Prog. Electromagn. Res. 147, 1–22 (2014)

    Article  Google Scholar 

  28. Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 041101 (22pp) (2006)

  29. Xu, M., Wang, L.V.: Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21, 814–822 (2002)

    Article  Google Scholar 

  30. Xu, M., Wang, L.V.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 1–5 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehonatan Salman.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, Y. Recovering functions from the spherical mean transform with data on an ellipse using eigenfunction expansion in elliptical coordinates. Anal.Math.Phys. 9, 209–219 (2019). https://doi.org/10.1007/s13324-017-0192-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-017-0192-6

Keywords

Navigation