Skip to main content
Log in

Trace formula and new form of N-soliton to the Gerdjikov–Ivanov equation

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Gerdjikov–Ivanov equation is investigated by the Riemann–Hilbert approach and the technique of regularization. The trace formula and new form of N-soliton solution are given. The dynamics of the stationary solitons and non-stationary solitons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Beals, R., Coifman, R.R.: Linear spectral problems, non-linear equations and the deltamacr-method. Inverse Probl. 5, 87–130 (1989)

    Article  MATH  Google Scholar 

  4. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490–492 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, H.H., Fan, E.G.: Variable separation and algebro-geometric solutions of the Gerdjikov–Ivanov equation. Chaos Soliton. Fract. 22, 93–101 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doktorov, E.V., Leble, S.B.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Springer, Dordrecht (2007)

    Google Scholar 

  7. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  8. Fan, E.G.: Darboux transformation and soliton-like solutions for the Gerdjikov–Ivanov equation. J. Phys. A Math. Gen. 33, 6925–6933 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, E.G.: Integrable evolution systems based on Gerdjikov–Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation. J. Math. Phys. 41, 7769–7782 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, E.G.: Explicit N-fold Darboux transformations and soliton solutions for nonlinear derivative Schrödinger equations. Commun. Theor. Phys. 35, 651–656 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geng, X.G., Wu, J.P.: Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa–Satsuma equation. Wave Motion 60, 62–72 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gerdjikov, V.S.: Algebraic and analytic aspects of N-wave type tquations. Contemp. Math. 301, 35–68 (2002)

    Article  Google Scholar 

  13. Gerdjikov, V.S.: Basic aspects of soliton theory. In: Mladenov, I.M., Hirshfeld, A.C. (eds.) Geometry, Integrability and Quantization. Sofetex, Sofia (2005)

    Google Scholar 

  14. Gerdjikov, V.S., Ivanov, I.: A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures. Bulg. J. Phys. 10, 130–143 (1983)

    MathSciNet  Google Scholar 

  15. Guo, L.J., Zhang, Y.S., Xu, S.W., Wu, Z.W., He, J.S.: The higher order rogue wave solutions of the Gerdjikov–Ivanov equation. Phys. Scr. 89, 035501 (2014)

    Article  Google Scholar 

  16. Hou, Y., Fan, E.G., Zhao, P.: Algebro-geometric solutions for the Gerdjikov–Ivanov hierarchy. J. Math. Phys. 54, 073505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kakei, S., Kikuchi, T.: Affine Lie group approach to a derivative nonlinear Schrödinger equation and its similarity reduction. Int. Math. Res. Not. 78, 4181–4209 (2004)

    Article  MATH  Google Scholar 

  18. Kakei, S., Kikuchi, T.: Solutions of a derivative nonlinear Schrödinger hierarchy and its similarity reduction. Glasg. Math. J. 47, 99–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)

    Article  MATH  Google Scholar 

  20. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    Article  MATH  Google Scholar 

  21. Kundu, A.: Exact solutions to higher-order nonlinear equations through gauge transformation. Phys. D 25, 399–406 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lenells, J., Fokas, A.S.: On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity 22, 11–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, X., Ma, W.X., Yu, J.: A new (2+1)-dimensional integrable system and its algebro-geometric solution. Nonlinear Dyn. 82, 1211–1220 (2015)

    Article  Google Scholar 

  24. Shchesnovich, V.S., Yang, J.K.: General soliton matrices in the Riemann–Hilbert problem for integrable nonlinear equations. J. Math. Phys. 44, 4604–4639 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu, S.W., He, J.S.: The rogue wave and breather solution of the Gerdjikov–Ivanov equation. J. Math. Phys. 53, 063507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu, J., He, J.S., Han, J.W.: Two kinds of new integrable decompositions of the Gerdjikov–Ivanov equation. J. Math. Phys. 53, 033510 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevskii, L.P.: Theory of Soliton: The inverse Scattering Technique. Nauka, Moscow (1980)

    MATH  Google Scholar 

  28. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8, 226–235 (1974)

    Article  MATH  Google Scholar 

  29. Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathematical physics by the method of the inverse scattering. II. Funct. Anal. Appl. 13, 166–174 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, J.Y., Li, Z.: Dressing method for a generalized focusing NLS equation via local Riemann–Hilbert problem. Acta Phys. Pol. B 42, 1893–1904 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, J.J., Zhu, J.Y., Wang, L.L.: Dressing by regularization to the Gerdjikov–Ivanov equation and the higher-order soliton. arXiv: 1504.03407v2 (2015)

Download references

Acknowledgements

Projects 11471295 and 11331008 were supported by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Zhu, J. & Geng, X. Trace formula and new form of N-soliton to the Gerdjikov–Ivanov equation. Anal.Math.Phys. 8, 415–426 (2018). https://doi.org/10.1007/s13324-017-0179-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-017-0179-3

Keywords

Mathematics Subject Classification

Navigation