Skip to main content
Log in

Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We shall give the proof of existence results for the entropy solutions of the following nonlinear parabolic problem

where A is a Leray–Lions operator having a growth not necessarily of polynomial type. The lower order term \(\Phi \) :\(\Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}^N\) is a Carathéodory function, for a.e. \((x,t)\in Q_T\) and for all \(s\in \mathbb {R}\), satisfying only a growth condition and the right hand side f belongs to \(L^1(Q_T)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Azroul, E., Redwane, H., Rhoudaf, M.: Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz Spaces. Port. Math. 66(1), 29–63 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Cheikh Ali, M., Guibé, O.: Nonlinear and non-coercive elliptic problems with integrable data (English summary). Adv. Math. Sci. Appl. 16(1), 275–297 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.-L.: An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Boccardo, L., Dall’Aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 87, 49–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boccardo, L., Gallouët, T.: On some nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17, 641–655 (1992)

    Article  MATH  Google Scholar 

  7. Boccardo, L., Giachetti, D., Diaz, J.-I., Murat, F.: Existence and regularity of renormalized solutions for some elliptic problems involving derivation of nonlinear terms. J. Differ. Equ. 106, 215–237 (1993)

    Article  MATH  Google Scholar 

  8. Dall’Aglio, A., Orsina, L.: Nonlinear parabolic equations with natural growth conditions and \(L^1\) data. Nonlinear Anal. 27, 59–73 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Nardo, R., Feo F., Guibé, O.: Existence result for nonlinear parabolic equations with lower order terms. Anal. Appl. (Singap.) 9(2), 161–186 (2011) [35K92 (35K20)]

  10. DiPerna, R.-J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Droniou, J.: Non-coercive linear elliptic problems. Potential Anal. 17(2), 181–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elmahi, A., Meskine, D.: Parabolic initial-boundary value problems in Orlicz spaces. Ann. Polon. Math. 85, 99–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 60, 1–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms and \(L^1\) data in Orlicz spaces. Portugaliae Mathematica. Nova 62, 143–183 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Gossez, J.-P., Mustonen, V.: Variational inequalities in Orlics-spaces. Nonlinear Anal. 11, 379–492 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gossez, J.-P.: Nonlinear elliptic boundary value problems for equation with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 217–237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gossez, J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gossez, J.-P.: Some approximation properties in Orlicz–Sobolev. Studia Math. 74, 17–24 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Hadj Nassar, S., Moussa, H., Rhoudaf, M.: Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces. Appl. Math. Comput. 249, 253–264 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Krasnosel’skii, M., Rutickii,Ya.: Convex functions and Orlicz spaces, Noordhoff, Groningen (1969)

  21. Kufner, A., John,O., Fučik,S.: Function spaces function spaces. In: Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Praha (1977)

  22. Landes, R.: On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. R. Soc. Edinb. Sect. A 89, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaire. Dunod et Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  24. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1: Incompressible Models. Oxford Univ. Press, Oxford (1996)

    MATH  Google Scholar 

  25. Murat, F.: Soluciones renormalizadas de EDP elipticas non lineales, Cours à l’Université de Séville, Publication R93023. Laboratoire d’Analyse Numérique, Paris VI (1993)

  26. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  27. Porretta, A.: Existence results for strongly nonlinear parabolic equations via strong convergence of truncations. Ann. Mat. Pura Appl. (IV) 177, 143–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rajagopal, K.R., Ru̇žička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13, 59–78 (2001)

    Article  MATH  Google Scholar 

  29. Ru̇žička, M.: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics. Springer, Berlin (2000)

  30. Simon, J.: Compact sets in \(L^p(0, T;{B})\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tienari, M.: A degree theory for a class of mappings of monotone type in Orlicz–Sobolev spaces. Ann. Acad, Scientiarum Fennice Helsinki (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Moussa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabdaoui, M., Moussa, H. & Rhoudaf, M. Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces. Anal.Math.Phys. 7, 47–76 (2017). https://doi.org/10.1007/s13324-016-0129-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-016-0129-5

Keywords

Navigation