Skip to main content
Log in

Three Dimensional Posed Face Recognition with an Improved Iterative Closest Point Method

  • 3DR Express
  • Published:
3D Research

Abstract

Dealing with different head poses is one of the most challenging issues in the area of face recognition. Recently, 3D images have been used for this purpose as they can gather more information from the head area. Kinect was used for capturing 3D images in our research. Iterative Closest Point (ICP) algorithm has been used in many researches to align a rotated pointcloud with its corresponding reference. However it has many variables that can improve its performance. So an improved version of ICP has been introduced in our research and its performance in terms of accuracy and speed has been evaluated. While it can have many applications, we have used it for increasing the performance of posed face recognition. We applied our proposed algorithm on a local database and concluded that it can significantly improve the recognition rate of 3D posed face recognition compared with using original raw posed image. Results of executing the proposed algorithm on a public database also indicate an improvement with respect to other recently proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. This database can be provided to researchers for research purposes, through sending an application by email to each of the authors.

References

  1. Bowyer, K. W., Chang, K., & Flynn, P. (2006). A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 101, 1–15.

    Article  Google Scholar 

  2. Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM Computing Surveys (CSUR), 35, 399–458.

    Article  Google Scholar 

  3. Soltanpour, S., Boufama, B., & Wu, Q. J. (2017). A survey of local feature methods for 3D face recognition. Pattern Recognition, 72, 391–406.

    Article  Google Scholar 

  4. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Kwok, N. M. (2016). A comprehensive performance evaluation of 3D local feature descriptors. International Journal of Computer Vision, 116, 66–89.

    Article  MathSciNet  Google Scholar 

  5. Wang, Y., Liu, J., & Tang, X. (2010). Robust 3D face recognition by local shape difference boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1858–1870.

    Article  Google Scholar 

  6. Llonch, R. S., Kokiopoulou, E., Tošić, I., & Frossard, P. (2010). 3D face recognition with sparse spherical representations. Pattern Recognition, 43, 824–834.

    Article  Google Scholar 

  7. Xu, C., Li, S., Tan, T., & Quan, L. (2009). Automatic 3D face recognition from depth and intensity Gabor features. Pattern Recognition, 42, 1895–1905.

    Article  Google Scholar 

  8. Mahoor, M. H., & Abdel-Mottaleb, M. (2009). Face recognition based on 3D ridge images obtained from range data. Pattern Recognition, 42, 445–451.

    Article  Google Scholar 

  9. Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., & et al. (2005). Overview of the face recognition grand challenge. In IEEE computer society conference on computer vision and pattern recognition. CVPR 2005, pp. 947–954.

  10. Zhang, X., & Gao, Y. (2009). Face recognition across pose: A review. Pattern Recognition, 42, 2876–2896.

    Article  Google Scholar 

  11. Ahonen, T., Hadid, A., & Pietikäinen, M. (2004). Face recognition with local binary patterns. In European conference on computer vision, pp. 469–481.

  12. Bartlett, M. S., Movellan, J. R., & Sejnowski, T. J. (2002). Face recognition by independent component analysis. IEEE Transactions on Neural Networks/A Publication of the IEEE Neural Networks Council, 13, 1450.

    Article  Google Scholar 

  13. Yu, H., & Yang, J. (2001). A direct LDA algorithm for high-dimensional data—With application to face recognition. Pattern Recognition, 34, 2067–2070.

    Article  Google Scholar 

  14. Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3, 71–86.

    Article  Google Scholar 

  15. Mokoena, N., Tsague, H. D., & Helberg, A. (2016). 2D methods for pose invariant face recognition. In 2016 international conference on computational science and computational intelligence (CSCI), pp 841–846.

  16. Ding, C., & Tao, D. (2016). A comprehensive survey on pose-invariant face recognition. ACM Transactions on Intelligent Systems and Technology (TIST), 7, 37.

    Google Scholar 

  17. Huang, J., Yuen, P. C., Chen, W.-S., & Lai, J. H. (2007). Choosing parameters of kernel subspace LDA for recognition of face images under pose and illumination variations. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37, 847–862.

    Article  Google Scholar 

  18. Singh, R., Vatsa, M., Ross, A., & Noore, A. (2007). A mosaicing scheme for pose-invariant face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37, 1212–1225.

    Article  Google Scholar 

  19. Moeini, A., Moeini, H., & Faez, K. (2015). Unrestricted pose-invariant face recognition by sparse dictionary matrix. Image and Vision Computing, 36, 9–22.

    Article  Google Scholar 

  20. Abiantun, R., Prabhu, U., & Savvides, M. (2014). Sparse feature extraction for pose-tolerant face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 2061–2073.

    Article  Google Scholar 

  21. Yi, D., Lei, Z., & Li, S. Z. (2013). Towards pose robust face recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3539–3545.

  22. Lin, S. D., & Wang, D.-E. (2018). Features selection and statistical classification for pose-invariant face recognition. In 2018 tenth international conference on advanced computational intelligence (ICACI), pp. 23–27.

  23. Fitzgibbon, A. W. (2003). Robust registration of 2D and 3D point sets. Image and Vision Computing, 21, 1145–1153.

    Article  Google Scholar 

  24. Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor fusion IV: Control paradigms and data structures (Vol. 4056, pp. 586–606). International Society for Optics and Photonics.

  25. Tam, G. K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y., Marshall, D., et al. (2013). Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, 19, 1199–1217.

    Article  Google Scholar 

  26. Mian, A., Bennamoun, M., & Owens, R. (2007). An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 29, 1927–1943.

    Article  Google Scholar 

  27. Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Third international conference on 3-D digital imaging and modeling. Proceedings, pp. 145–152.

  28. Li, B. Y., Mian, A. S., Liu, W., & Krishna, A. (2016). Face recognition based on Kinect. Pattern Analysis and Applications, 19, 977–987.

    Article  MathSciNet  Google Scholar 

  29. Li, B. Y., Xue, M., Mian, A., Liu, W., & Krishna, A. (2016). Robust RGB-D face recognition using Kinect sensor. Neurocomputing, 214, 93–108.

    Article  Google Scholar 

  30. Mantecon, T., del-Bianco, C. R., Jaureguizar, F., & García, N. (2014). Depth-based face recognition using local quantized patterns adapted for range data. In 2014 IEEE international conference on image processing (ICIP), pp. 293–297.

  31. Ajmera, R., Nigam, A., & Gupta, P. (2014). 3D face recognition using kinect. In Proceedings of the 2014 Indian conference on computer vision graphics and image processing, p. 76.

  32. Savran, A., Gur, R., & Verma, R. (2013). Automatic detection of emotion valence on faces using consumer depth cameras. In 2013 IEEE international conference on computer vision workshops (ICCVW), pp. 75–82.

  33. Ciaccio, C., Wen, L., & Guo, G. (2013). Face recognition robust to head pose changes based on the RGB-D sensor. In 2013 IEEE sixth international conference on biometrics: Theory, applications and systems (BTAS), pp. 1–6.

  34. Nguyen, C. V., Izadi, S., & Lovell, D. (2012). Modeling kinect sensor noise for improved 3d reconstruction and tracking. In Second international conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT), pp. 524–530.

  35. Mallick, T., Das, P. P., & Majumdar, A. K. (2014). Characterizations of noise in Kinect depth images: A review. IEEE Sensors Journal, 14, 1731–1740.

    Article  Google Scholar 

  36. Mohammadi, S., & Gervei, O. (2018). Using nonlocal filtering and feature extraction approaches in three-dimensional face recognition by Kinect. International Journal of Advanced Robotic Systems, 15, 1729881418787743.

    Article  Google Scholar 

  37. Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16, 2080–2095.

    Article  MathSciNet  Google Scholar 

  38. Lebrun, M. (2012). An analysis and implementation of the BM3D image denoising method. Image Processing on Line, 2, 175–213.

    Article  Google Scholar 

  39. Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13, 119–152.

    Article  Google Scholar 

  40. Bergström, P., & Edlund, O. (2014). Robust registration of point sets using iteratively reweighted least squares. Computational Optimization and Applications, 58, 543–561.

    Article  MathSciNet  Google Scholar 

  41. Werghi, N., Tortorici, C., Berretti, S., & Del Bimbo, A. (2016). Boosting 3D LBP-based face recognition by fusing shape and texture descriptors on the mesh. IEEE Transactions on Information Forensics and Security, 11, 964–979.

    Article  Google Scholar 

  42. Li, H., Huang, D., Morvan, J.-M., Wang, Y., & Chen, L. (2015). Towards 3D face recognition in the real: A registration-free approach using fine-grained matching of 3D keypoint descriptors. International Journal of Computer Vision, 113, 128–142.

    Article  MathSciNet  Google Scholar 

  43. Berretti, S., Pala, P., & Del Bimbo, A. (2014). Face recognition by super-resolved 3D models from consumer depth cameras. IEEE Transactions on Information Forensics and Security, 9, 1436–1449.

    Article  Google Scholar 

  44. Do, M. N., & Vetterli, M. (2002). Contourlets: A directional multiresolution image representation. In International conference on image processing. 2002. Proceedings, pp. I–I.

  45. Easley, G. R., Labate, D., & Lim, W.-Q. (2006). Optimally sparse image representations using shearlets. In Fortieth Asilomar conference on signals, systems and computers. ACSSC’06, pp. 974–978.

  46. Donoho, D. L., & Duncan, M. R. (2000). Digital curvelet transform: Strategy, implementation and experiments. In Wavelet applications VII (Vol. 4056, pp. 12–30). International Society for Optics and Photonics.

  47. da Costa, D. M., Peres, S. M., Lima, C. A., & Mustaro, P. (2015). Face recognition using support vector machine and multiscale directional image representation methods: A comparative study. In 2015 international joint conference on neural networks (IJCNN), pp. 1–8.

  48. Candes, E., Demanet, L., Donoho, D., & Ying, L. (2006). Fast discrete curvelet transforms. Multiscale Modeling & Simulation, 5, 861–899.

    Article  MathSciNet  Google Scholar 

  49. Elaiwat, S., Bennamoun, M., Boussaid, F., & El-Sallam, A. (2014). 3-D face recognition using curvelet local features. IEEE Signal Processing Letters, 21, 172–175.

    Article  Google Scholar 

  50. Mandal, T., Wu, Q. J., & Yuan, Y. (2009). Curvelet based face recognition via dimension reduction. Signal Processing, 89, 2345–2353.

    Article  Google Scholar 

  51. Rajagopal, R., & Ranganathan, V. (2017). Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification. Biomedical Signal Processing and Control, 34, 1–8.

    Article  Google Scholar 

  52. Andrew, A. M. (2000). An introduction to support vector machines and other kernel-based learning methods by Nello Christianini and John Shawe-Taylor, Cambridge University Press, Cambridge, 2000, xiii + 189 pp., ISBN 0-521-78019-5 (Hbk,£ 27.50),” Robotica, vol. 18, pp. 687–689.

  53. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2, 27.

    Google Scholar 

  54. Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., & et al. (2008). Bosphorus database for 3D face analysis, biometrics and identity management: First European workshop, BIOID 2008, Roskilde, Denmark, May 7–9, 2008. Revised Selected Papers,” ed: Berlin: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S., Gervei, O. Three Dimensional Posed Face Recognition with an Improved Iterative Closest Point Method. 3D Res 10, 22 (2019). https://doi.org/10.1007/s13319-019-0232-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-019-0232-0

Keywords

Navigation