Skip to main content
Log in

Rapalogues as hCES2A Inhibitors: In Vitro and In Silico Investigations

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Rapamycin and its semi-synthetic analogues (rapalogues) are frequently used in combination with other prescribed medications in clinical settings. Although the inhibitory effects of rapalogues on cytochrome P450 enzymes (CYPs) have been well examined, the inhibition potentials of rapalogues on human esterases have not been investigated. Herein, the inhibition potentials and inhibitory mechanisms of six marketed rapalogues on human esterases are investigated.

Methods

The inhibitory effects of six marketed rapalogues (rapamycin, zotarolimus, temsirolimus, everolimus, pimecrolimus and tacrolimus) on three major esterases, including human carboxylesterases 1 (hCES1A), human carboxylesterases 2 (hCES2A) and butyrylcholinesterase (BuChE), were assayed using isozyme-specific substrates. Inhibition kinetic analyses and docking simulations were performed to investigate the inhibitory mechanisms of the rapalogues with strong hCES2A inhibition potency.

Results

Zotarolimus and pimecrolimus displayed strong inhibition of human hCES2A but these agents did not inhibit hCES1A or BuChE. Further investigation demonstrated that zotarolimus could strongly inhibit intracellular hCES2A in living HepG2 cells, with an estimated IC50 value of 4.09 µM. Inhibition kinetic analyses revealed that zotarolimus inhibited hCES2A-catalyzed fluorescein diacetate hydrolysis in a mixed manner, with the Ki value of 1.61 µM. Docking simulations showed that zotarolimus could tightly bind on hCES2A at two district ligand-binding sites, consistent with its mixed inhibition mode.

Conclusion

Our findings demonstrate that several marketed rapalogues are potent and specific hCES2A inhibitors, and these agents can serve as leading compounds for the development of more efficacious hCES2A inhibitors to modulate the pharmacokinetic profiles and toxicity of hCES2A-substrate drugs (such as the anticancer agent irinotecan).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kahan BD, Camardo JS. Rapamycin: clinical results and future opportunities. Transplantation. 2001;72(7):1181–93. https://doi.org/10.1097/00007890-200110150-00001.

    Article  CAS  PubMed  Google Scholar 

  2. Meng LH, Zheng XF. Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol Sin. 2015;36(10):1163–9. https://doi.org/10.1038/aps.2015.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pencreach E, Guérin E, Nicolet C, Lelong-Rebel I, Voegeli AC, Oudet P, Larsen AK, Gaub MP, Guenot D. Marked activity of irinotecan and rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of rapamycin/hypoxia-inducible factor-1alpha axis. Clin Cancer Res. 2009;15(4):1297–307. https://doi.org/10.1158/1078-0432.CCR-08-0889.

    Article  CAS  PubMed  Google Scholar 

  4. Pan H, Wang L, Zhang X, Zhang G, Mai H, Han Y, Guo S. Rapamycin, mycophenolate mofetil, methylprednisolone, and cytotoxic T-lymphocyte-associated antigen 4 immunoglobulin-based conditioning regimen to induce partial tolerance to hind limb allografts without cytoreductive conditioning. Transplant Proc. 2008;40(5):1714–21. https://doi.org/10.1016/j.transproceed.2008.03.152.

    Article  CAS  PubMed  Google Scholar 

  5. Cai P, Tsao RS, Ruppen ME. In vitro metabolic study of temsirolimus: preparation, isolation, and identification of the metabolites. Drug Metab Dispos. 2007;35(9):1554–63. https://doi.org/10.1124/dmd.107.014746.

    Article  CAS  PubMed  Google Scholar 

  6. Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, Yang DF, Shi DS, Yan BF. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther. 2006;319(3):1467–76. https://doi.org/10.1124/jpet.106.110577.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu HJ, Appel DI, Johnson JA, Chavin KD, Markowitz JS. Role of carboxylesterase 1 and impact of natural genetic variants on the hydrolysis of trandolapril. Biochem Pharmacol. 2009;77(7):1266–72. https://doi.org/10.1016/j.bcp.2008.12.017.

    Article  CAS  PubMed  Google Scholar 

  8. Li ZW, Zhang J, Zhang YF, Zuo Z. Role of esterase mediated hydrolysis of simvastatin in human and rat blood and its impact on pharmacokinetic profiles of simvastatin and its active metabolite in rat. J Pharm Biomed Anal. 2019;168:13–22. https://doi.org/10.1016/j.jpba.2019.02.004.

    Article  CAS  PubMed  Google Scholar 

  9. Shi DS, Yang J, Yang DF, LeCluyse EL, Black C, You L, Akhlaghi F, Yan B. Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel. J Pharmacol Exp Ther. 2006;319(3):1477–84. https://doi.org/10.1124/jpet.106.111807.

    Article  CAS  PubMed  Google Scholar 

  10. Ma MK, McLeod HL. Lessons learned from the irinotecan metabolic pathway. Curr Med Chem. 2003;10(1):41–9. https://doi.org/10.2174/0929867033368619.

    Article  CAS  PubMed  Google Scholar 

  11. Fujiyama N, Miura M, Kato S, Sone T, Isobe M, Satoh S. Involvement of carboxylesterase 1 and 2 in the hydrolysis of mycophenolate mofetil. Drug Metab Dispos. 2010;38(12):2210–7. https://doi.org/10.1124/dmd.110.034249.

    Article  CAS  PubMed  Google Scholar 

  12. Sun ZJ, Murry DJ, Sanghani SP, Davis WI, Kedishvili NY, Zou Q, Hurley TD, Bosron WF. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A1. J Pharmacol Exp Ther. 2004;310(2):469–76. https://doi.org/10.1124/jpet.104.067116.

    Article  CAS  PubMed  Google Scholar 

  13. Hatfield MJ, Tsurkan L, Garrett M, Shaver TM, Hyatt JL, Edwards CC, Hicks LD, Potter PM. Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochem Pharmacol. 2011;81(1):24–31. https://doi.org/10.1016/j.bcp.2010.09.001.

    Article  CAS  PubMed  Google Scholar 

  14. Barthel BL, Torres RC, Hyatt JL, Edwards CC, Hatfield MJ, Potter PM, Koch TH. Identification of human intestinal carboxylesterase as the primary enzyme for activation of a doxazolidine carbamate prodrug. J Med Chem. 2008;51(2):298–304. https://doi.org/10.1021/jm7011479.

    Article  CAS  PubMed  Google Scholar 

  15. Yang DF, Pearce RE, Wang XL, Gaedigk R, Wan YJY, Yan BF. Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem Pharmacol. 2009;77(2):238–47. https://doi.org/10.1016/j.bcp.2008.10.005.

    Article  CAS  PubMed  Google Scholar 

  16. Jin Q, Feng L, Wang DD, Dai ZR, Wang P, Zou LW, Liu ZH, Wang JY, Yu Y, Ge GB, Cui JN, Yang L. A two-photon ratiometric fluorescent probe for imaging carboxylesterase 2 in living cells and tissues. ACS Appl Mater Interfaces. 2015;7(51):28474–81. https://doi.org/10.1021/acsami.5b09573.

    Article  CAS  PubMed  Google Scholar 

  17. Song YQ, Guan XQ, Weng ZM, Wang YQ, Chen J, Jin Q, Fang SQ, Fan B, Cao YF, Hou J, Ge GB. Discovery of a highly specific and efficacious inhibitor of human carboxylesterase 2 by large-scale screening. Int J Biol Macromol. 2019;137:261–9. https://doi.org/10.1016/j.ijbiomac.2019.06.235.

    Article  CAS  PubMed  Google Scholar 

  18. Wang DD, Jin Q, Zou LW, Hou J, Lv X, Lei W, Cheng HL, Ge GB, Yang L. A bioluminescent sensor for highly selective and sensitive detection of human carboxylesterase 1 in complex biological samples. Chem Commun. 2016;52(15):3183–6. https://doi.org/10.1039/c5cc09874b.

    Article  CAS  Google Scholar 

  19. Wang YQ, Weng ZM, Dou TY, Hou J, Wang DD, Ding LL, Zou LW, Yu Y, Chen J, Tang H, Ge GB. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1. Int J Biol Macromol. 2018;120:1944–54. https://doi.org/10.1016/j.ijbiomac.2018.09.178.

    Article  CAS  PubMed  Google Scholar 

  20. Weng ZM, Ge GB, Dou TY, Wang P, Liu PK, Tian XH, Qiao N, Yu Y, Zou LW, Zhou Q, Zhang WD, Hou J. Characterization and structure–activity relationship studies of flavonoids as inhibitors against human carboxylesterase 2. Bioorg Chem. 2018;77:320–9. https://doi.org/10.1016/j.bioorg.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Williams ET, Bourgea J, Wong YN, Patten CJ. Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2. Drug Metab Dispos. 2011;39(8):1329–33. https://doi.org/10.1124/dmd.111.039628.

    Article  CAS  PubMed  Google Scholar 

  22. Jewell C, Ackermann C, Payne NA, Fate G, Voorman R, Williams FM. Specificity of procaine and ester hydrolysis by human, minipig, and rat skin and liver. Drug Metab Dispos. 2007;35(11):2015–22. https://doi.org/10.1124/dmd.107.015727.

    Article  CAS  PubMed  Google Scholar 

  23. Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  CAS  PubMed  Google Scholar 

  24. Song YQ, Weng ZM, Dou TY, Finel M, Wang YQ, Ding LL, Jin Q, Wang DD, Fang SQ, Cao YF, Hou J, Ge GB. Inhibition of human carboxylesterases by magnolol: kinetic analyses and mechanism. Chem Biol Interact. 2019;308:339–49. https://doi.org/10.1016/10.1016/j.cbi.2019.06.003.

    Article  CAS  PubMed  Google Scholar 

  25. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303. https://doi.org/10.1093/nar/gky427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zou LW, Li YG, Wang P, Zhou K, Hou J, Jin Q, Hao DC, Ge GB, Yang L. Design, synthesis, and structure–activity relationship study of glycyrrhetinic acid derivatives as potent and selective inhibitors against human carboxylesterase 2. Eur J Med Chem. 2016;112:280–8. https://doi.org/10.1016/j.ejmech.2016.02.020.

    Article  CAS  PubMed  Google Scholar 

  28. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57–61.

    CAS  PubMed  Google Scholar 

  29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. https://doi.org/10.1002/jcc.21256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Askari N, Rezvannejad E, Moghadam SD, Shafieipour S. Structural analysis of misfolding equilibrative nucleoside transporter 3in H-syndrome. J Mol Struct. 2019;1177:177–85. https://doi.org/10.1016/j.molstruc.2018.09.051.

    Article  CAS  Google Scholar 

  31. El-Gamal KM, El-Morsy AM, Saad AM, Eissa IH, Alswah M. Synthesis, docking, QSAR, ADMET and antimicrobial evaluation of new quinoline-3-carbonitrile derivatives as potential DNA-gyrase inhibitors. J Mol Struct. 2018;1166:15–33. https://doi.org/10.1016/j.molstruc.2018.04.010.

    Article  CAS  Google Scholar 

  32. Abigerges D, Armand JP, Chabot GG, Da Costa L, Fadel E, Cote C, Hérait P, Gandia D. Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J Natl Cancer Inst. 1994;86(6):446–9. https://doi.org/10.1093/jnci/86.6.446.

    Article  CAS  PubMed  Google Scholar 

  33. Shi CC, Chen TR, Zhang QH, Wei LH, Huang C, Zhu YD, Liu HB, Bai YK, Wang FJ, Guo WZ, Zhang LR, Ge GB. Inhibition of human thrombin by the constituents of licorice: inhibition kinetics and mechanistic insights through in vitro and in silico studies. RSC Adv. 2020;10(7):3626–35. https://doi.org/10.1039/c9ra09203j.

    Article  CAS  Google Scholar 

  34. Kim IS, Kim Y, Kwak TH, Yoo HH. Effects of beta-lapachone, a new anticancer candidate, on cytochrome P450-mediated drug metabolism. Cancer Chemother Pharmacol. 2013;72(3):699–702. https://doi.org/10.1007/s00280-013-2230-x.

    Article  CAS  PubMed  Google Scholar 

  35. Quiroga AD, Li LN, Trötzmüller M, Nelson R, Proctor SD, Köfeler H, Lehner R. Deficiency of carboxylesterase 1/esterase-x results in obesity, hepatic steatosis, and hyperlipidemia. Hepatology. 2012;56(6):2188–98. https://doi.org/10.1002/hep.25961.

    Article  CAS  PubMed  Google Scholar 

  36. Dominguez E, Galmozzi A, Chang JW, Hsu KL, Pawlak J, Li WW, Godio C, Thomas J, Partida D, Niessen S, O’Brien PE, Russell AP, Watt MJ, Nomura DK, Cravatt BF, Saez E. Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes. Nat Chem Biol. 2014;10(2):113–21. https://doi.org/10.1038/nchembio.1429.

    Article  CAS  PubMed  Google Scholar 

  37. Eggleston W, Clark KH, Marraffa JM. Loperamide abuse associated with cardiac dysrhythmia and death. Ann Emerg Med. 2017;69(1):83–6. https://doi.org/10.1016/j.annemergmed.2016.03.047.

    Article  PubMed  Google Scholar 

  38. Wang DD, Zou LW, Jin Q, Hou J, Ge GB, Yang L. Recent progress in the discovery of natural inhibitors against human carboxylesterases. Fitoterapia. 2017;117:84–95. https://doi.org/10.1016/j.fitote.2017.01.010.

    Article  CAS  PubMed  Google Scholar 

  39. Ding LX, Wang L, Zou K, Li B, Song YQ, Zhang QH, Zhao YT, Xu ZJ, Ge GB, Zhao B, Zhu WL. Discovery of dihydrooxazolo[2,3-a]isoquinoliniums as highly specific inhibitors of hCE2. RSC Adv. 2019;9(61):35904–12. https://doi.org/10.1039/c9ra07457k.

    Article  CAS  Google Scholar 

  40. Takahashi S, Katoh M, Saitoh T, Nakajima M, Yokoi T. Different inhibitory effects in rat and human carboxylesterases. Drug Metab Dispos. 2009;37(5):956–61. https://doi.org/10.1124/dmd.108.024331.

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi S, Katoh M, Saitoh T, Nakajima M, Yokoi T. Allosteric kinetics of human carboxylesterase 1: species differences and interindividual variability. J Pharm Sci. 2008;97(12):5434–45. https://doi.org/10.1002/jps.21376.

    Article  CAS  PubMed  Google Scholar 

  42. Godin SJ, Scollon EJ, Hughes MF, Potter PM, De VMJ, Ross MK. Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolism by humans and rats. Drug Metab Dispos. 2006;34(10):1764–71. https://doi.org/10.1124/dmd.106.010058.

    Article  CAS  PubMed  Google Scholar 

  43. Scott G, Osborne SA, Greig G, Hartmann S, Ebelin ME, Burtin P, Rappersberger K, Komar M, Wolff K. Pharmacokinetics of pimecrolimus, a novel nonsteroid anti-inflammatory drug, after single and multiple oral administration. Clin Pharmacokinet. 2003;42(14):1305–14. https://doi.org/10.2165/00003088-200342140-00006.

    Article  CAS  PubMed  Google Scholar 

  44. Zollinger M, Waldmeier F, Hartmann S, Zenke G, Zimmerlin AG, Glaenzel U, Baldeck JP, Schweitzer A, Berthier S, Moenius T, Grassberger MA. Pimecrolimus: absorption, distribution, metabolism, and excretion in healthy volunteers after a single oral dose and supplementary investigations in vitro. Drug Metab Dispos. 2006;34(5):765–74. https://doi.org/10.1124/dmd.105.007732.

    Article  CAS  PubMed  Google Scholar 

  45. Cohen EEW, Wu KH, Hartford C, Kocherginsky M, Eaton KN, Zha YY, Nallari A, Maitland ML, Fox-Kay K, Moshier K, House L, Ramirez J, Undevia SD, Fleming GF, Gajewski TF, Ratain MJ. Phase I studies of sirolimus alone or in combination with pharmacokinetic modulators in advanced cancer patients. Clin Cancer Res. 2012;18(17):4785–93. https://doi.org/10.1158/1078-0432.CCR-12-0110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ley SV, Tackett MN, Maddess ML, Anderson JC, Brennan PE, Cappi MW, Heer JP, Helgen C, Kori M, Kouklovsky C, Marsden P, Norman J, Osborn DP, Palomero MA, Pavey JBJ, Pinel C, Robinson LA, Schnaubelt J, Scott JS, Spilling CD, Watanabe H, Wesson KE, Willis MC. Total synthesis of rapamycin. Chem Eur J. 2009;15(12):2874–914. https://doi.org/10.1002/chem.200801656.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Cheng Shi, Guang-Bo Ge or Li-Rong Zhang.

Ethics declarations

Funding

This work was partially funded by the National Natural Science Foundation of China (81922070 & 81773815).

Conflict of interest

Cheng-Cheng Shi, Yun-Qing Song, Rong-Jing He, Xiao-Qing Guan, Li-Lin Song, Shi-Tong Chen, Meng-Ru Sun, Guang-Bo Ge and Li-Rong Zhang declare that there is no conflict of interest.

Authors’ contributions

LZ and GG conceived the study and designed the experimental process. CS, YS, MS, LS and XG performed the experiments; CS, SC, RH, GG and LZ carried out data and results analysis; GG, LZ and CS wrote the manuscript and interpretation of data.

Consent to participate

Not applicable.

Consent for publication

All authors approve the publication of this study.

Code availability

Not applicable.

Availability of data and material

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, CC., Song, YQ., He, RJ. et al. Rapalogues as hCES2A Inhibitors: In Vitro and In Silico Investigations. Eur J Drug Metab Pharmacokinet 46, 129–139 (2021). https://doi.org/10.1007/s13318-020-00659-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-020-00659-9

Navigation