Skip to main content
Log in

Sound localization with microsecond precision in mammals: what is it we do not understand?

  • Review article
  • Published:
e-Neuroforum

Abstract

The Jeffress model for the computation and encoding of interaural time differences (ITDs) is one of the most widely known theoretical models of a neuronal microcircuit. In archosaurs (birds and reptiles), several features envisioned by Jeffress in 1948 seem to be implemented, like a topographic map of space and axonal delay lines. In mammals, however, most of the model predictions could not be verified or have been disproved. This led to an ongoing competition of alternative models and hypothesis, which is not settled by far. Particularly the role of the feed-forward inhibitory inputs to the binaural coincidence detector neurons in the medial superior olive (MSO) remains a matter of debate. In this paper, we review the present state of the field and indicate what in our opinion are the most important gaps in understanding of the mammalian circuitry. Approaching these issues requires integrating all levels of neuroscience from cellular biophysics to behavior and even evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baumannn VJ, Lehnert S, Leibold C, Koch U (2013) Tonotopic organization of the hyperpolarization-activated current (Ih) in the mammalian medial superior olive. Front Neural Circuits 7:117

    Article  Google Scholar 

  2. Borst A, Euler T (2011) Seeing things in motion: models, circuits, and mechanisms. Neuron 71:974–994

    Article  CAS  PubMed  Google Scholar 

  3. Brand A, Behrend O, Marqardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547

    Article  CAS  PubMed  Google Scholar 

  4. Couchman K, Grothe B, Felmy F (2010) Medial superior olivary neurons receive surprisingly few excitatory and inhibitory inputs with balanced strength and short-term dynamics. J Neurosci 30:17111–17121

    Article  CAS  PubMed  Google Scholar 

  5. Day ML, Delgutte B (2013) Decoding sound source location and separation using neural population activity patterns. J Neurosci 33:15837–15847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Getzmann S (2004) Spatial discrimination of sound sources in the horizontal plane following an adapter sound. Hear Res 191:14–20

    Article  PubMed  Google Scholar 

  7. Goodman DF, Benichoux V, Brette R (2013) Decoding neural responses to temporal cues for sound localization. Elife 2:e01312

    Article  PubMed Central  PubMed  Google Scholar 

  8. Grothe B, Pecka M (2014) The natural history of sound localization in mammals—a story of neuronal inhibition. Front Neural Circuits 8:116

    Article  PubMed Central  PubMed  Google Scholar 

  9. Grothe B, Covey E, Casseday JH (1996) Spatial tuning of neurons in the inferior colliculus of the big brown bat: effects of sound level, stimulus type and multiple sound sources. J Comp Physiol A 179:89–102

  10. Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

  11. Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686

    Article  CAS  PubMed  Google Scholar 

  12. Heffner RS, Heffner HE (1988) Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). Behav Neurosci 102:422–428

    Article  CAS  PubMed  Google Scholar 

  13. Jeffress L (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39

    Article  CAS  PubMed  Google Scholar 

  14. Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5:247–253

    Article  CAS  PubMed  Google Scholar 

  15. Karino S, Smith PH, Yin TC, Joris PX (2011) Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a re-examination. J Neurosci 31:3016–3031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Khurana S, Liu Z, Lewis AS, Rosa K, Chetkovich D, Golding NL (2012) An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision. J Neurosci 32:2814–2823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Koch U, Grothe B (1997) Azimuthal position affects analysis of complex sounds in the mammalian auditory system. Naturwiss 84:160–162

    Article  CAS  Google Scholar 

  18. Koch U, Grothe B (2000) Interdependence of spatial and temporal coding in the auditory midbrain. J Neurophysiol 83:2300–2314

    CAS  PubMed  Google Scholar 

  19. Lee CC, Middlebrooks JC (2011) Auditory cortex spatial sensitivity sharpens during task performance. Nat Neurosci 14:108–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lehnert S, Ford MC, Alexandrova O, Hellmundt F, Felmy F, Grothe B, Leibold C (2014) Action potential generation in an anatomically constrained model of medial superior olive axons. J Neurosci 34:5370–5384

    Article  PubMed  Google Scholar 

  21. Leibold C (2010) Influence of inhibitory synaptic kinetics on the interaural time difference sensitivity in a linear model of binaural coincidence detection. J Acoust Soc Am 127:931–942

    Article  PubMed  Google Scholar 

  22. Lesica N, Lingner A, Grothe B (2010) Population coding of interaural time differences in gerbils and barn owls. J Neurosci 30:11696–11702

    Article  CAS  PubMed  Google Scholar 

  23. Lüling H, Siveke I, Grothe B, Leibold C (2011) Frequency-invariant representation of interaural time differences in mammals. PLoS Comput Biol 7:e1002013

    Article  PubMed Central  PubMed  Google Scholar 

  24. Magnusson AK, Kapfer C, Grothe B, Koch U (2005) Maturation of glycinergic inhibition in the gerbil medial superior olive after hearing onset. J Physiol 568(Pt 2):497–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nat Neurosci 13:601–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401

    Article  CAS  PubMed  Google Scholar 

  27. McColgan T, Shah S, Köppl C, Carr CE, Wagner H (2014) A functional circuit model of interaural time difference processing. J Neurophysiol 112:2850–2864

    Article  PubMed  Google Scholar 

  28. Middlebrooks JC, Clock AE, Xu L, Green DM (1994) A panoramic code for sound location by cortical neurons. Science 264:842–844

    Article  CAS  PubMed  Google Scholar 

  29. Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246

    Article  Google Scholar 

  30. Myoga M, Lehnert S, Leibold C, Felmy F, Grothe B (2014) Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nat Commun 5:3790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28:6914–6925

    Article  CAS  PubMed  Google Scholar 

  32. Rautenberg PL, Grothe B, Felmy F (2009) Quantification of the three-dimensional morphology of coincidence detector neurons in the medial superior olive of gerbils during late postnatal development. J Comp Neurol 517:385–396

    Article  PubMed  Google Scholar 

  33. Roberts MT, Seeman SC, Golding NL (2013) A mechanistic understanding of the role of feedforward inhibition in the mammalian sound localization circuitry. Neuron 78:923–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Schroeder MR (1977) New viewpoints in binaural interactions. In: Evans EF, Wilson JP (eds) Psychophysics and physiology of hearing, Academic, New York, pp 455–467

    Google Scholar 

  35. Scott LL, Mathews PJ, Golding NL (2005) Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. J Neurosci 25:7887–7895

    Article  CAS  PubMed  Google Scholar 

  36. Siveke I, Leibold C, Schiller E, Grothe B (2012) Adaptation of binaural processing in the adult brainstem induced by ambient noise. J Neurosci 32:462–473

    Article  CAS  PubMed  Google Scholar 

  37. Skottun BC, Shackleton TM, Arnott RH, Palmer AR (2001) The ability of inferior colliculus neurons to signal differences in interaural delay. Proc Natl Acad Sci U S A 98:14050–14054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Spirou GA, Rowland KC, Berrebi AS (1998) Ultrastructure of neurons and large synaptic terminals in the lateral nucleus of the trapezoid body of the cat. J Comp Neurol 398:257–272

    Article  CAS  PubMed  Google Scholar 

  39. Stange A, Myoga MH, Lingner A, Ford MC, Alexandrova O, Felmy F, Pecka M, Siveke I, Grothe B (2013) Adaptation in sound localization: from GABA(B) receptor-mediated synaptic modulation to perception. Nat Neurosci 16:1840–1847

    Article  CAS  PubMed  Google Scholar 

  40. Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci U S A 83:8400–8404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019–11025

    PubMed Central  CAS  PubMed  Google Scholar 

  42. van der Heijden M, Lorteije JA, Plauška A, Roberts MT, Golding NL, Borst JG (2013) Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron 78:936–948

    Article  PubMed Central  PubMed  Google Scholar 

  43. Vigneault-MacLean BK, Hall SE, Phillips DP (2007) The effects of lateralized adaptors on lateral position judgements of tones within and across frequency channels. Hear Res 224:93–100

    Article  PubMed  Google Scholar 

  44. von Bekesy G (1930) Zur Theorie des Hörens; über das Richtungshören bei einer Zeitdifferenz oder Lautstärkenungleichheit der beiderseitigen Schallwirkungen. Physik Zeitschr 31:824–835, 857–868

    Google Scholar 

  45. von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3:53–64

    Article  Google Scholar 

  46. Yin TC, Chan JC (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Pecka for providing data for Figs. 3 and 4. The authors have been supported by the DFG (SFB 870).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Leibold or Benedikt Grothe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leibold, C., Grothe, B. Sound localization with microsecond precision in mammals: what is it we do not understand?. e-Neuroforum 6, 3–10 (2015). https://doi.org/10.1007/s13295-015-0001-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-015-0001-3

Keywords

Navigation