Skip to main content
Log in

Neuropharmacological functional imaging

  • Review article
  • Published:
e-Neuroforum

Abstract

The marriage of psychopharmacology with functional neuroimaging enables the investigation of neurochemical modulation of cognitive functions in the human brain. From the point of basic neurocognitive research, pharmacological functional neuroimaging is hence a valuable completion of animal experiments. From the point of clinical neuroscience, pharmacological neuroimaging contributes to the understanding and development of pharmacological treatment approaches for patients with neurological and psychiatric disorders. The present paper provides an overview of the methodological approach and illustrates research findings and recent developments from pharmacological functional magnetic resonance imaging studies by means of selective examples from the dopaminergic and cholinergic neurotransmitter system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bloom AS, Hoffmann RG, Fuller SA et al (1999) Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model. Hum Brain Mapp 8:235–244

    Article  CAS  PubMed  Google Scholar 

  2. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  CAS  PubMed  Google Scholar 

  3. Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–e125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Evans S, Gray MA, Dowell NG et al (2013) APOE E4 Carriers show prospective memory enhancement under nicotine, and evidence for specialisation within medial BA10. Neuropsychopharmacology 38:655–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dechent P, Frahm J (2004) Funktionelle Magnetresonanz-Tomografie des menschlichen Gehirns. Neuroforum 3:229–236

    Google Scholar 

  6. Furey ML, Pietrini P, Haxby JV (2000) Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290:2315–2319

    Article  CAS  PubMed  Google Scholar 

  7. Giessing C, Fink GR, Rosler F, Thiel CM (2007) fMRI data predict individual differences of behavioral effects of nicotine: a partial least square analysis. J Cogn Neurosci 19:658–670

    Article  CAS  PubMed  Google Scholar 

  8. Giessing C, Thiel CM, Alexander-Bloch AF et al (2013) Human brain functional network changes associated with enhanced and impaired attentional task performance. J Neurosci 33:5903–5914

    Article  CAS  PubMed  Google Scholar 

  9. Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424–430

    Article  PubMed  Google Scholar 

  10. Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67:1–27

    Article  CAS  PubMed  Google Scholar 

  11. Honey G, Bullmore E (2004) Human pharmacological MRI. Trends Pharmacol Sci 25:366–374

    Article  CAS  PubMed  Google Scholar 

  12. Honey GD, Bullmore ET, Soni W et al (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci U S A 96:13432–13437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kukolja J, Thiel CM, Fink GR (2009) Cholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humans. J Neurosci 29:8119–8128

    Article  CAS  PubMed  Google Scholar 

  14. Luciana M, Depue RA, Arbisi P, Leon A (1992) Facilitation of working memory in humans by a d2 dopamine receptor agonist. J Cogn Neurosci 4:58–68

    Article  CAS  PubMed  Google Scholar 

  15. Mattay VS, Callicott JH, Bertolino A et al (2000) Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage 12:268–275

    Article  CAS  PubMed  Google Scholar 

  16. Rieckmann A, Karlsson S, Fischer H, Backman L (2012) Increased bilateral frontal connectivity during working memory in young adults under the influence of a dopamine D1 receptor antagonist. J Neurosci 32:17067–17072

    Article  CAS  PubMed  Google Scholar 

  17. Rusted J, Ruest T, Gray MA (2011) Acute effects of nicotine administration during prospective memory, an event related fMRI study. Neuropsychologia 49:2362–2368

    Article  PubMed  Google Scholar 

  18. Rusted JM, Trawley S, Heath J et al (2005) Nicotine improves memory for delayed intentions. Psychopharmacology 182:355–365

    Article  CAS  PubMed  Google Scholar 

  19. Saykin AJ, Wishart HA, Rabin LA et al (2004) Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain 127:1574–1583

    Article  PubMed  Google Scholar 

  20. Stein EA, Pankiewicz J, Harsch HH et al (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155:1009–1015

    CAS  PubMed  Google Scholar 

  21. Thiel CM, Fink GR (2013) Neuropharmakologische funktionelle Bildgebung. In: Schneider F, Fink GR (eds) Funktionelle Kernspintomographie in Psychiatrie und Neurologie. Springer, pp 191–202

  22. Thiel CM, Zilles K, Fink GR (2005) Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex. Neuropsychopharmacology 30:810–820

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG (TH766-6/1). The manuscript was translated into English by Dr. Carsten Gießing.

Compliance with ethical guidelines

Conflict of interest. C. Thiel states that there are no conflicts of interest. The accompanying manuscript does not include any studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Thiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiel, C. Neuropharmacological functional imaging. e-Neuroforum 4, 92–98 (2013). https://doi.org/10.1007/s13295-013-0050-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-013-0050-4

Keywords

Navigation