Skip to main content

Advertisement

Log in

Expression and prognostic value of E2F activators in NSCLC and subtypes: a research based on bioinformatics analysis

  • Original Article
  • Published:
Tumor Biology

Abstract

E2F activators (E2F1–3) codify a family of transcription factors (TFs) in higher eukaryotes. E2F activators are involved in the cell cycle regulation and synthesis of DNA in mammalian cells, and their overexpression has been detected in many human cancers. However, their clinical significance has not been deeply researched in non-small-cell lung cancer (NSCLC), and bioinformatics analysis has never been reported to explore their clinical role in NSCLC. In the current study, we investigated the expression and prognostic value of E2F activators in NSCLC patients through the “TCGA datasets” and the “Kaplan-Meier plotter” (KM plotter) database. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Compared with normal tissue samples, E2F activators were overexpressed in NSCLC tissues, in lung adenocarcinoma (LUAD) tissues, and in lung squamous cell carcinoma (LUSC) tissues. In NSCLC patients, E2F1 expression was significantly correlated with age, sex, and tumor stage. E2F2 expression was found to be significantly correlated with sex and tumor size. We further demonstrated that E2F1 and E2F2 overexpressions were significantly associated with poor prognosis. In LUAD patients, E2F1 expression was significantly correlated with tumor size and tumor stage. E2F2 expression was significantly correlated with lymph node status and tumor stage. E2F1 and E2F2 overexpression showed a significant association with poor prognosis, while E2F3 overexpression was significantly correlated to better prognosis. In LUSC patients, E2F1 was concluded to be significantly correlated with tumor stage. However, E2F activators were not found to be correlated to prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin. 2011;61:91–112.

    Article  PubMed  Google Scholar 

  3. Subramaniam S, Thakur RK, Yadav VK, Nanda R, Chowdhury S, Agrawal A. Lung cancer biomarkers: state of the art. J Carcinog. 2013;12:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cooper WA, Lam DC, O’Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis. 2013;5(Suppl 5):S479–90.

    PubMed  PubMed Central  Google Scholar 

  5. Niklinski J, Niklinska W, Laudanski J, Chyczewska E, Chyczewski L. Prognostic molecular markers in non-small cell lung cancer. Lung Cancer. 2001;34(Suppl 2):S53–8.

    Article  PubMed  Google Scholar 

  6. Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, Asimacopoulos PJ, Agnantis N, Kittas C, Papavassiliou AG. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002;198:142–56.

    Article  CAS  PubMed  Google Scholar 

  7. Abreu VA, Howard MS. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. N Am J Med Sci. 2015;7:176–88.

    Article  Google Scholar 

  8. Attwooll C, Lazzerini DE, Helin K. The e2f family: specific functions and overlapping interests. EMBO J. 2004;23:4709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trimarchi JM, Lees JA. Sibling rivalry in the e2f family. Nat Rev Mol Cell Biol. 2002;3:11–20.

    Article  CAS  PubMed  Google Scholar 

  10. DeGregori J, Johnson DG. Distinct and overlapping roles for e2f family members in transcription, proliferation and apoptosis. CURR MOL MED. 2006;6:739–48.

    CAS  PubMed  Google Scholar 

  11. Iaquinta PJ, Lees JA. Life and death decisions by the e2f transcription factors. Curr Opin Cell Biol. 2007;19:649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dimova DK, Dyson NJ. The e2f transcriptional network: old acquaintances with new faces. Oncogene. 2005;24:2810–26.

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, Cleghorn W, Chen HZ, Kornacker K, Liu CG, Pandit SK, Khanizadeh M, Weinstein M, Leone G, de Bruin A. Synergistic function of e2f7 and e2f8 is essential for cell survival and embryonic development. Dev Cell. 2008;14:62–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Westendorp B, Mokry M, Groot KM, Holstege FC, Cuppen E, de Bruin A. E2f7 represses a network of oscillating cell cycle genes to control s-phase progression. Nucleic Acids Res. 2012;40:3511–23.

    Article  CAS  PubMed  Google Scholar 

  15. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81.

    Article  CAS  PubMed  Google Scholar 

  16. Peart MJ, Poyurovsky MV, Kass EM, Urist M, Verschuren EW, Summers MK, Jackson PK, Prives C. Apc/c(cdc20) targets e2f1 for degradation in prometaphase. Cell Cycle. 2010;9:3956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen H, Tsai S, Leone G. Emerging roles of e2fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009;9:785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, Nuckolls F, Giangrande P, Wright FA, Field SJ, Greenberg ME, Orkin S, Nevins JR, Robinson ML, Leone G. The e2f1-3 transcription factors are essential for cellular proliferation. Nature. 2001;414:457–62.

    Article  CAS  PubMed  Google Scholar 

  19. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR. Distinct roles for e2f proteins in cell growth control and apoptosis. Proc Natl Acad Sci U S A. 1997;94:7245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santos M, Martinez-Fernandez M, Duenas M, Garcia-Escudero R, Alfaya B, Villacampa F, Saiz-Ladera C, Costa C, Oteo M, Duarte J, Martinez V, Gomez-Rodriguez MJ, Martin ML, Fernandez M, Viatour P, Morcillo MA, Sage J, Castellano D, Rodriguez-Peralto JL, de la Rosa F, Paramio JM. In vivo disruption of an rb-e2f-ezh2 signaling loop causes bladder cancer. Cancer Res. 2014;74:6565–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rennhack J, Andrechek E. Conserved e2f mediated metastasis in mouse models of breast cancer and her2 positive patients. Oncoscience. 2015;2:867–71.

    PubMed  PubMed Central  Google Scholar 

  22. Shackney SE, Chowdhury SA, Schwartz R. A novel subset of human tumors that simultaneously overexpress multiple e2f-responsive genes found in breast, ovarian, and prostate cancers. Cancer Inform. 2014;13:89–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E. Expression of the e2f family in human gastrointestinal carcinomas. Int J Cancer. 1999;81:535–8.

    Article  CAS  PubMed  Google Scholar 

  24. Huang CL, Liu D, Nakano J, Yokomise H, Ueno M, Kadota K, Wada H. E2f1 overexpression correlates with thymidylate synthase and survivin gene expressions and tumor proliferation in non small-cell lung cancer. Clin Cancer Res. 2007;13:6938–46.

    Article  CAS  PubMed  Google Scholar 

  25. Chen L, Yu JH, Lu ZH, Zhang W. E2f2 induction in related to cell proliferation and poor prognosis in non-small cell lung carcinoma. Int J Clin Exp Pathol. 2015;8:10545–54.

    PubMed  PubMed Central  Google Scholar 

  26. Cooper CS, Nicholson AG, Foster C, Dodson A, Edwards S, Fletcher A, Roe T, Clark J, Joshi A, Norman A, Feber A, Lin D, Gao Y, Shipley J, Cheng SJ. Nuclear overexpression of the e2f3 transcription factor in human lung cancer. Lung Cancer. 2006;54:155–62.

    Article  PubMed  Google Scholar 

  27. Tomczak K, Czerwinska P, Wiznerowicz M. The cancer genome atlas (tcga): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19:A68–77.

    Google Scholar 

  28. Guo Y, Sheng Q, Li J, Ye F, Samuels DC, Shyr Y. Large scale comparison of gene expression levels by microarrays and rnaseq using tcga data. PLoS One. 2013;8:e71462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–337.

  30. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

  31. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One. 2013;8:e82241.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  PubMed  Google Scholar 

  33. Gyorffy B, Lanczky A, Szallasi Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer. 2012;19:197–208.

    Article  CAS  PubMed  Google Scholar 

  34. Xu MM, Mao GX, Liu J, Li JC, Huang H, Liu YF, Liu JH. Low expression of the FoxO4 gene may contribute to the phenomenon of EMT in non-small cell lung cancer. Asian Pac J Cancer Prev. 2014;15:4013–8.

    Article  PubMed  Google Scholar 

  35. Hung JJ, Hsueh CT, Chen KH, Hsu WH, Wu YC. Clinical significance of E2F1 protein expression in non-small cell lung cancer. Exp Hematol Oncol. 2012;1:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tai MC, Kajino T, Nakatochi M, Arima C, Shimada Y, Suzuki M, Miyoshi H, Yatabe Y, Yanagisawa K, Takahashi T. Mir-342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer. Carcinogenesis. 2015;36:1464–73.

    CAS  PubMed  Google Scholar 

  37. Gu Y, Cheng Y, Song Y, Zhang Z, Deng M, Wang C, Zheng G, He Z. MicroRNA-493 suppresses tumor growth, invasion and metastasis of lung cancer by regulating E2F1. PLoS One. 2014;9:e102602.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Volm M, Koomagi R, Rittgen W. Clinical implications of cyclins, cyclin-dependent kinases, RB and E2F1 in squamous-cell lung carcinoma. Int J Cancer. 1998;79:294–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ivey-Hoyle M, Conroy R, Huber HE, Goodhart PJ, Oliff A, Heimbrook DC. Cloning and characterization of E2F-2, a novel protein with the biochemical properties of transcription factor E2F. Mol Cell Biol. 1993;13:7802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. DeGregori J. The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta. 2002;1602:131–50.

    CAS  PubMed  Google Scholar 

  41. Reimer D, Sadr S, Wiedemair A, Goebel G, Concin N, Hofstetter G, Marth C, Zeimet AG. Expression of the E2F family of transcription factors and its clinical relevance in ovarian cancer. Ann N Y Acad Sci. 2006;1091:270–81.

    Article  CAS  PubMed  Google Scholar 

  42. Reimer D, Sadr S, Wiedemair A, Stadlmann S, Concin N, Hofstetter G, Muller-Holzner E, Marth C, Zeimet AG. Clinical relevance of E2F family members in ovarian cancer—an evaluation in a training set of 77 patients. Clin Cancer Res. 2007;13:144–51.

    Article  CAS  PubMed  Google Scholar 

  43. Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Miu CG, Zhan XS, Li J. Promising roles of mammalian E2Fs in hepatocellular carcinoma. Cell Signal. 2014;26:1075–81.

    Article  CAS  PubMed  Google Scholar 

  44. He Y, Armanious MK, Thomas MJ, Cress WD. Identification of E2F-3B, an alternative form of E2f-3 lacking a conserved n-terminal region. Oncogene. 2000;19:3422–33.

    Article  CAS  PubMed  Google Scholar 

  45. Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L, Miron A, Nevins JR. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by RB proteins. Mol Cell Biol. 2000;20:3626–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams MR, Sears R, Nuckolls F, Leone G, Nevins JR. Complex transcriptional regulatory mechanisms control expression of the E2F3 locus. Mol Cell Biol. 2000;20:3633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A, Edwards S, Flohr P, Falconer A, Roe T, Kovacs G, Dennis N, Fisher C, Wooster R, Huddart R, Foster CS, Cooper CS. Amplification and overexpression of E2F3 in human bladder cancer. Oncogene. 2004;23:1627–30.

    Article  CAS  PubMed  Google Scholar 

  48. Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R, Gasser T, Mihatsch MJ, Sauter G. E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene. 2004;23:5616–23.

    Article  CAS  PubMed  Google Scholar 

  49. Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A, Southgate C, Dowe A, Dearnaley D, Jhavar S, Eeles R, Feber A, Cooper CS. Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene. 2004;23:5871–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Shi, R., Yuan, K. et al. Expression and prognostic value of E2F activators in NSCLC and subtypes: a research based on bioinformatics analysis. Tumor Biol. 37, 14979–14987 (2016). https://doi.org/10.1007/s13277-016-5389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5389-z

Keywords

Navigation