Skip to main content

Advertisement

Log in

Gamma-synuclein binds to AKT and promotes cancer cell survival and proliferation

  • Original Article
  • Published:
Tumor Biology

Abstract

Hyperactivation of AKT plays a critical role in the survival and proliferation of cancer cells. However, the molecular mechanisms underlying AKT activation remain elusive. Here, we tested the effect of γ-synuclein, a member of the synuclein family of proteins, on the activation of AKT. We show that the expression level of γ-synuclein is increased in non-small cell lung cancer (NSCLC) tissues. γ-Synuclein binds to the protein kinase domain of AKT and promotes its phosphorylation. Overexpression of γ-synuclein in H157 cells enhances cell proliferation and protects the cells from staurosporine-induced cytotoxicity. Knockdown of γ-synuclein attenuates AKT activation and cell proliferation induced by epidermal growth factor. The effect of γ-synuclein is abolished when AKT is depleted. Thus, γ-synuclein promotes cell survival and proliferation via activating AKT and may play a causal role in the pathogenesis of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Esposito L, Conti D, Ailavajhala R, Khalil N, Giordano A. Lung cancer: are we up to the challenge? Curr genomics. 2010;11(7):513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer. 1995;75(1 Suppl):191–202.

    Article  CAS  PubMed  Google Scholar 

  3. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.

    Article  CAS  PubMed  Google Scholar 

  5. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.

    Article  CAS  PubMed  Google Scholar 

  6. Lemjabbar-Alaoui H, Hassan OU, Yang Y-W, Buchanan P. Lung cancer: biology and treatment options. Biochim Biophys Acta. 2015;1856(2):189–210.

    CAS  PubMed  Google Scholar 

  7. Zhu G, Fan Z, Ding M, Zhang H, Mu L, Ding Y, et al. An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis. Oncogene. 2015;34(49):5971–82.

    Article  CAS  PubMed  Google Scholar 

  8. Lastwika KJ, Wilson W, Li QK, Norris J, Xu H, Ghazarian SR, et al. Control of PD-L1 expression by oncogenic activation of the AKT–mTOR pathway in non–small cell lung cancer. Cancer Res. 2016;76(2):227–38.

    Article  CAS  PubMed  Google Scholar 

  9. Settleman J, Kurie JM. Drugging the bad “AKT-TOR” to overcome TKI-resistant lung cancer. Cancer Cell. 2007;12(1):6–8.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou H, Huang S. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Peptide Sci. 2011;12(1):30.

    Article  Google Scholar 

  11. Franke T. PI3K/Akt: getting it right matters. Oncogene. 2008;27(50):6473–88.

    Article  CAS  PubMed  Google Scholar 

  12. Guo G, Gong K, Wohlfeld B, Hatanpaa KJ, Zhao D, Habib AA. Ligand-independent EGFR signaling. Cancer Res. 2015;75(17):3436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hill MM, Hemmings BA. Hemmings, inhibition of protein kinase B/Akt: implications for cancer therapy. Pharmacol Ther. 2002;93(2):243–51.

    Article  CAS  PubMed  Google Scholar 

  14. Balsara BR, Pei J, Mitsuuchi Y, Page R, Klein-Szanto A, Wang H, et al. Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis. 2004;25(11):2053–9.

    Article  CAS  PubMed  Google Scholar 

  15. Okudela K, Suzuki M, Kageyama S, Bunai T, Nagura K, Igarashi H, et al. PIK3CA mutation and amplification in human lung cancer. Pathol Int. 2007;57(10):664–71.

    Article  CAS  PubMed  Google Scholar 

  16. Spoerke JM, O’Brien C, Huw L, Koeppen H, Fridly J, Brachmann RK, et al. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res. 2012;18(24):6771–83.

    Article  CAS  PubMed  Google Scholar 

  17. Singh VK, Jia Z. Targeting synuclein-γ to counteract drug resistance in cancer. Expert Opin Ther Targets. 2008;12(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  18. Duyckaerts C. Neurodegenerative lesions: seeding and spreading. Rev Neurol. 2013;169(10):825–33.

    Article  CAS  PubMed  Google Scholar 

  19. Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL, et al. Identification, localization and characterization of the human γ-synuclein gene. Hum Genet. 1998;103(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Spence MJ, Zhang YL, Jiang Y, Liu YE, Shi YE. Transcriptional suppression of synuclein γ (SNCG) expression in human breast cancer cells by the growth inhibitory cytokine oncostatin M. Breast Cancer Res Treatment. 2000;62(2):99–107.

    Article  CAS  Google Scholar 

  21. Ahmad M, Attoub S, Singh MN, Martin FL, El-Agnaf OM. γ-synuclein and the progression of cancer. FASEB J. 2007;21(13):3419–30.

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Liu W, Wu Y, Zhou Y, Xue R, Luo C, et al. Loss of epigenetic control of synuclein-γ gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Res. 2005;65(17):7635–43.

    CAS  PubMed  Google Scholar 

  23. Jiang Y, Liu YE, Lu A, Gupta A, Goldberg ID, Liu J, et al. Stimulation of estrogen receptor signaling by γ synuclein. Cancer Res. 2003;63(14):3899–903.

    CAS  PubMed  Google Scholar 

  24. Jia T, Liu YE, Liu J, Shi YE. Stimulation of breast cancer invasion and metastasis by synuclein γ. Cancer Res. 1999;59(3):742–7.

    CAS  PubMed  Google Scholar 

  25. Gupta A, Inaba S, Wong OK, Fang G, Liu J. Breast cancer-specific gene 1 interacts with the mitotic checkpoint kinase BubR1. Oncogene. 2003;22(48):7593–9.

    Article  CAS  PubMed  Google Scholar 

  26. Du K, Tsichlis PN. Regulation of the Akt kinase by interacting proteins. Oncogene. 2005;24(50):7401–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto M, Bar-On P, Ho G, Takenouchi T, Rockenstein E, Crews L, et al. Beta-synuclein regulates Akt activity in neuronal cells. A possible mechanism for neuroprotection in Parkinson’s disease. J Biol Chem. 2004;279(22):23622–9.

    Article  CAS  PubMed  Google Scholar 

  28. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61(10):3986–97.

    CAS  PubMed  Google Scholar 

  29. Toulany M, Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol. 2015;35:180–90.

    Article  CAS  PubMed  Google Scholar 

  30. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.

    Article  CAS  PubMed  Google Scholar 

  31. Malanga D, Scrima M, De Marco C, Fabiani F, De Rosa N, De Gisi S, et al. Activating E17K mutation in the gene encoding the protein kinase AKT in a subset of squamous cell carcinoma of the lung. Cell Cycle. 2008;7(5):665–9.

    Article  CAS  PubMed  Google Scholar 

  32. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448(7152):439–44.

    Article  CAS  PubMed  Google Scholar 

  33. Beck JT, Ismail A, Tolomeo C. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat Rev. 2014;40(8):980–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gadgeel SM, Wozniak A. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non–small-cell lung cancer. Clin Lung Cancer. 2013;14(4):322–32.

    Article  CAS  PubMed  Google Scholar 

  35. Meng J, Dai B, Fang B, Bekele BN, Bornmann WG, Sun D, et al. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS One. 2010;5(11):e14124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ji H, Liu YE, Jia T, Wang M, Liu J, Xiao G, et al. Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res. 1997;57(4):759–64.

    CAS  PubMed  Google Scholar 

  37. Buchman VL, Hunter HJ, Pinõn LG, Thompson J, Privalova EM, Ninkina NN, et al. Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci. 1998;18(22):9335–41.

    CAS  PubMed  Google Scholar 

  38. Wu K, Quan Z, Weng Z, Li F, Zhang Y, Yao X, et al. Expression of neuronal protein synuclein γ gene as a novel marker for breast cancer prognosis. Breast Cancer Res Treatment. 2007;101(3):259–67.

    Article  CAS  Google Scholar 

  39. Liang W, Miao S, Zhang B, He S, Shou C, Manivel P, et al. Synuclein γ protects Akt and mTOR and renders tumor resistance to Hsp90 disruption. Oncogene. 2015;34(18):2398–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanrong Ju.

Additional information

Zengxia Ma and Jianyi Niu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Niu, J., Sun, E. et al. Gamma-synuclein binds to AKT and promotes cancer cell survival and proliferation. Tumor Biol. 37, 14999–15005 (2016). https://doi.org/10.1007/s13277-016-5371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5371-9

Keywords

Navigation