Skip to main content

Advertisement

Log in

Methylation in promoter regions of PITX2 and RASSF1A genes in association with clinicopathological features in breast cancer patients

  • Original Article
  • Published:
Tumor Biology

Abstract

Breast cancer is a heterogeneous disease with very different responses to therapy and different length of survival. In many cases, however, the determination of the stage and histopathological characteristics of breast cancer is insufficient to predict prognosis and response to treatment for the vast heterogeneity of the disease. To understand the molecular signature of subtypes of breast cancer, we attempted to identify the methylation status of key tumour suppressor gene Ras association (RalGDS/AF-6) domain family member 1 isoform a (RASSF1A) and a member of the paired-like homeodomain transcription factor family which functions in left–right asymmetry development (PITX2) and to correlate results with known clinicopathological features of breast cancer. Formalin-fixed, paraffin-embedded (FFPE) tissues of breast carcinomas (n = 149) were used for DNA extraction. DNA was modified by bisulphite conversion. Detection of the methylation level of the genes mentioned above was performed by methylation-sensitive high-resolution melting assay (MS-HRM). Based on MS-HRM results for RASSF1A and PITX2, we subdivided the samples into four groups according to methylation level (≤50 % methylated, >50 % methylated, 100 % methylated and completely unmethylated alleles). All degrees of methylation status for both genes underwent analysis of dependence with known clinicopathological features, and we found significant associations. In 134 of 149 (89.9 %) primary breast carcinomas, the RASSF1A promoter was methylated. Total hypermethylation of PITX2 was observed in 60 of 135 (44.4 %) breast cancer cases. RASSF1A hypermethylation had significant association with increased age (p < 0.05), tumour grade (p < 0.0001) and stage (p < 0.0001) in the 100 % methylated group. There was significant association of PITX2 hypermethylation with tumour grade (p < 0.0001) and stage (p < 0.0001). Association between the methylation level of both investigated genes and tumour type was significant for ductal invasive carcinoma cases only (p < 0.0001). This study shows different levels of heterogeneous methylation acquired by MS-HRM assay of the promoter region of RASSF1A and PITX2 and its relationship with clinicopathological features of 149 breast cancer patients. We noticed that immunohistopathological subtypes of breast cancer contain distinct promoter methylation patterns. All these data suggest that hypermethylation of the CpG island promoters of RASSF1A and PITX2 might play an essential role in the very early stages of breast cancer pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403.

    Article  CAS  PubMed  Google Scholar 

  2. Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer. 2013;1:1133–45.

    Article  Google Scholar 

  3. Fletcher SW, Elmore JG. Clinical practise. Mammographic screening for breast cancer. N Engl J Med. 2003;17:1672–80.

    Article  Google Scholar 

  4. Watanabe Y, Maekawa M. Methylation of DNA in cancer. Adv Clin Chem. 2010;52:145–67.

    Article  CAS  PubMed  Google Scholar 

  5. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;4:253–66.

    Article  Google Scholar 

  6. Esteller M. Cancer as an epigenetics disease: DNA methylation and chromatin alterations in human tumors. Adv Exp Med Biol. 2003;532:39–49.

    Article  CAS  PubMed  Google Scholar 

  7. Fackler MJ, McVeight M, Evron E, Garrett E, Mehrotra J, Polyak K, Sukumar S, Argani P. DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and twist in in situ and invasive lobular breast carcinoma. Int J Cancer. 2003;107:970–5.

    Article  CAS  PubMed  Google Scholar 

  8. Fujikane T, Nishikawa N, Toyota M, Suzuki H, Nojima M, Maruyama R, Ashida M, Ohe-Toyota M, Kai M, Nishidate T, et al. Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res Treat. 2010;122:699–710.

    Article  PubMed  Google Scholar 

  9. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, Maher ER, Latif F. Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res. 2011;71:2988–99.

    Article  CAS  PubMed  Google Scholar 

  10. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE, Graff JR. Aberrant methylation of the estrogen receptor and E-cadherin 5′-CpG islands increases with malignant progression in human breast cancer. Cancer Res. 2000;60:4346–8.

    CAS  PubMed  Google Scholar 

  11. Tommasi S, Karm DL, Wu X, Yen Y, Pfeifer GP. Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res. 2009;11:R14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Veeck J, Noetzel E, Bektas N, Jost E, Hartmann A, Knüchel R, Dahl E. Promoter hypermethylation of the SFRP2 gene is a high-frequent alteration and tumor-specific epigenetic marker in human breast cancer. Mol Cancer. 2008;7:83.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2:210–9.

    Article  CAS  PubMed  Google Scholar 

  14. Honorio S, Agathanggelou A, Schuermann M, Pankow W, Viacava P, Maher ER, Latif F. Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene. 2003;22:147–50.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Y, Cui L, Chen WD, Shen SH, Ding LD. The prognostic role of RASSF1A promoter methylation in breast cancer: a meta-analysis of published data. PLoS One. 2012;7:e36780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee JS, Fackler MJ, Lee JH, Choi C, Park MH, Yoon JH, Zhang Z, Sukumar S. Basal-like breast cancer displays distinct patterns of promoter methylation. Cancer Biol Ther. 2010;9:1017–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harbeck N, Nimmrich I, Hartmann A, Ross JS, Cufer T, Grützmann R, Kristiansen G, Paradiso A, Hartmann O, Margossian A, et al. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J Clin Oncol. 2008;26:5036–42.

    Article  CAS  PubMed  Google Scholar 

  18. Maier S, Nimmrich I, Koenig T, Eppenberger-Castori S, Bohlmann I, Paradiso A, Spyratos F, Thomssen C, Mueller V, Nährig J, et al. DNA-methylation of the homeodomain transcription factor PITX2 reliably predicts risk of distant disease recurrence in tamoxifen-treated, node-negative breast cancer patients—technical and clinical validation in a multi-Centre setting in collaboration with the European Organisation for Research and Treatment of Cancer (EORTC) PathoBiology group. Eur J Cancer. 2007;43:1679–86.

    Article  CAS  PubMed  Google Scholar 

  19. Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME, Schwope I, Bolt-de Vries J, Harbeck N, Koenig T, Hartmann O, Kluth A, Dietrich D, et al. DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat. 2008;3:429–37.

    Article  Google Scholar 

  20. Agathanggelou A, Cooper WN, Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005;65:3497–508.

    Article  CAS  PubMed  Google Scholar 

  21. Dallol A, Cooper WN, Al-Mulla F, Agathanggelou A, Maher ER, Latif F. Depletion of the Ras association domain family 1, isoform a—associated novel microtubule-associated protein, C19ORF5/MAPIS, causes mitotic abnormalities. Cancer Res. 2007;67:492–500.

    Article  CAS  PubMed  Google Scholar 

  22. Tommasi S, Dammann R, Zhang Z, Wang Y, Liu L, Tsark WM, Wilczynski SP, Li J, You M, Pfeifer GP. Tumor susceptibility of Rassf1a knockout mice. Cancer Res. 2005;65:92–8.

    CAS  PubMed  Google Scholar 

  23. Song MS, Song SJ, Ayad NG, Chang JS, Lee JH, Hong HK, Lee H, Choi N, Kim J, Kim H, et al. The tumour suppressor RASSFA regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol. 2004;6:129–37.

    Article  CAS  PubMed  Google Scholar 

  24. Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis Markers. 2007;23:73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Logan M, Pagan-Westphal SM, Smith DM, Paganessi L, Tabin CJ. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell. 1998;94:307–17.

    Article  CAS  PubMed  Google Scholar 

  26. Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, et al. Identification of a Wnt/Dvl/beta-catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111:673–85.

    Article  CAS  PubMed  Google Scholar 

  27. Kitamura K, Miura H, Suzuki R, Kondo S, Yokoyama M. Mouse PITX2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development. 1999;126:5749–58.

    CAS  PubMed  Google Scholar 

  28. Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Murray JC, et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet. 1996;14:392–9.

    Article  CAS  PubMed  Google Scholar 

  29. Silverberg SG, Kurman RJ, Nogales F, Mutter GL, Kubik-Huch RA, Tavassoli FA. Epithelial tumours and related lesions. In: Tavassoli FA, DeVilee P, editors. Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 221–32.

    Google Scholar 

  30. Elston CW, Ellis IO. Pathologic prognostic factors in breast cancer I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1996;29:403–9.

    Google Scholar 

  31. Singletary ES, Allred C, Aschely P, Bassett L, Berry D, Bland KI, Borgen PI, Greene F, et al. Revision of the American joint committee on cancer staging system for breast cancer. J of Clin Oncol. 2002;20:3628–36.

    Article  Google Scholar 

  32. Sobin LH, Wittekind CH. TNM classification of malignant tumours. 6th ed. New York: UICC. Wiley-Liss ; 2002.ISBN 0-471-22288-7

    Google Scholar 

  33. Hammond MEH, Haves DF, Wolff AC, Mangu PB, Temin S. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med. 2010;134:E1–E16.

    Google Scholar 

  34. Wolf AC. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.

    Article  Google Scholar 

  35. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, 2015.

  36. Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE. Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst. 2004;96:1856–65.

    Article  CAS  PubMed  Google Scholar 

  37. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002;196:1–7.

    Article  CAS  PubMed  Google Scholar 

  38. Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007;35:e41.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fiolka R, Zubor P, Janusicova V, Visnovsky J, Mendelova A, Kajo K, Lasabova Z, Plank L, Danko J. Promoter hypermethylation of the tumor-suppressor genes RASSF1A, GSTP1 and CDH1 in endometrial cancer. Oncol Rep. 2013;30:2878–86.

    CAS  PubMed  Google Scholar 

  40. Culbova M, Lasabova Z, Stanclova A, Tilandyova P, Zubor P, Fiolka R, Danko J, Visnovsky J. Methylation of selected tumor-suppressor genes in benign and malignant ovarian tumors. Ceska Gynekol. 2011;76:274–9.

    CAS  Google Scholar 

  41. Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B, Kreipe H. Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol. 2002;160:605–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lasabova Z, Tilandyova P, Kajo K, Zubor P, Burjanivova T, Danko J, Plank L. Hypermethylation of the GSTP1 promoter region in breast cancer is associated with prognostic clinicopathological parameters. Neoplasma. 2010;57:35–40.

    Article  CAS  PubMed  Google Scholar 

  43. Pfeifer P, Dammann R. Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry. 2005;70:576–83.

    CAS  PubMed  Google Scholar 

  44. Burbee DG, Forgacs E, Zöchbauer-Müller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001;93:691–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yeo W, Wong W, Wong N, Law BK, Tse GM, Zhong S. High frequency of promoter hypermethylation of RASSF1A in tumorous and non-tumorous tissue of breast cancer. Pathology. 2005;37:125–30.

    Article  CAS  PubMed  Google Scholar 

  46. Sunami E, Shinozaki M, Sim MS, Nguyen SL, Vu AT, Giuliano AE, Hoon DS. Estrogen receptor and HER2/neu status affect epigenetic differences of tumor related genes in primary breast tumors. Breast Cancer Res. 2008;10:R46.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vaissiere T, Hung RJ, Zaridze D, Moukeria A, Cuenin C, Fasolo V, Ferro G, Paliwal A, Hainaut P, Brennan P, Tost J, Boffetta P, Herceg Z. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res. 2009;69:243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jarmalaite S, Jankevicius F, Kurgonaite K, Suziedelis K, Mutanen P, Husgafvel-Pursiainen K. Promoter hypermethylation in tumor suppressor genes shows association with stage, grade and invasiveness of bladder cancer. Oncology. 2008;75:145–51.

    Article  CAS  PubMed  Google Scholar 

  49. Muller HM, Widschwendter A, Fiegl H, Ivarsson L, Goebel G, Perkmann E, Marth C, Widschwendter M. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res. 2003;63:7641–5.

    PubMed  Google Scholar 

  50. Wan Abdul Rahman WF, Fauzi MH, Jaafar H. Expression of DNA methylation marker of paired-like homeodomain transcription factor 2 and growth receptors in invasive ductal carcinoma of the breast. Asian Pac J Cancer Prev. 2014;15:8441–5.

    Article  PubMed  Google Scholar 

  51. Lian ZQ, Wang Q, Li WP, Zhang AQ, Wu L. Screening of significantly hypermethylated genes in breast cancer using microarray-based methylated-CpG island recovery assay and identification of their expression levels. Int J Oncol. 2012;41:629–38.

    CAS  PubMed  Google Scholar 

  52. Hartman O, Spyratos F, Harbeck N, Dietrich D, Fassbender A, Schmitt M, Eppenberger-Castori S, Vuaroqueaux V, Lerebours F, Welzel K, et al. DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res. 2009;15:315–23.

    Article  Google Scholar 

  53. Buhmeida A, Merdad A, Al-Maghrabi J, Al-Thobaiti F, Ata M, Bugis A, Syrjänen K, Abuzenadah A, Chaudhary A, Gari M, Al-Qahtani M, Dallol A. RASSF1A methylation is predictive of poor prognosis in female breast cancer in a background of overall low methylation frequency. Anticancer Res. 2011;9:2975–81.

    Google Scholar 

  54. Wojdacz TK, Windelov JA, Thestrup BB, Damsgaard TE, Overgaard J, Hansen LL. Identification and characterization of locus-specific methylation patterns within novel loci undergoing hypermethylation during breast cancer pathogenesis. Breast Cancer Res. 2014;16:R17.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dedeurwaerder S, Desmedt C, Calonne E. Largest ever DNA methylation dataset for breast cancer completed. Expert Rev Mol Diag. 2011;11:470.

    CAS  Google Scholar 

  56. Pang JM, Deb S, Takano EA, Byrne DJ, Jene N, Boulghourjian A, Holliday A, Millar E, Lee CS, O’Toole SA, Dobrovic A, Fox SB. Methylation profiling of ductal carcinoma in situ and its relationship to histopathological features. Breast Cancer Res. 2014;16:423.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Klajic J, Fleischer T, Dejeux E, Edvardsen H, Warnberg F, Bukholm I, Lønning PE, Solvang H, Børresen-Dale AL, Tost J, Kristensen VN. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors. BMC Cancer. 2013;13:456.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Swift-Scanlan T, Vang R, Blackford A, Fackler MJ, Sukumar S. Methylated genes in breast cancer. Associations with clinical and histopathological features in a familial breast cancer cohort. Cancer Biol Ther. 2011;11:853–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Slovak Research and Development Agency (contract no. APVV-14-0815), the Scientific Grant Agency (VEGA 1/0243/12) and Comenius University (grant UK/156/2010).

Authors’ contributions

EJ wrote this paper. KK and LP were involved in histopathological analysis and data collection. MG statistically evaluated data. ZL and BM participated in laboratory procedures. JD and KD critically revised the manuscript. PZ revised the final manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Jezkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jezkova, E., Kajo, K., Zubor, P. et al. Methylation in promoter regions of PITX2 and RASSF1A genes in association with clinicopathological features in breast cancer patients. Tumor Biol. 37, 15707–15718 (2016). https://doi.org/10.1007/s13277-016-5324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5324-3

Keywords

Navigation