Skip to main content

Advertisement

Log in

TRPM8 promotes aggressiveness of breast cancer cells by regulating EMT via activating AKT/GSK-3β pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

Breast cancer already taken the first place of incidence in Chinese female cancer patients. TRPM8 is found to be over-expressed in breast cancer, but whether it promotes breast cancer aggressiveness remains unknown. In our study, TRPM8 was identified highly expressing in all the tested breast cancer cell lines including MCF-7, T47D, MDA-MB-231, BT549, SKBR3 and ZR-75-30, while it just could be detected in MCF-10A, the normal breast epithelial cell. Then four pairs of clinical samples were analyzed using Western blotting and the result showed that TRPM8 expression is higher in tumor tissues than in adjacent nontumor tissues. Subsequently, we established TRPM8 high-expressing MCF-7 cell line and TRPM8 knockout MDA-MB-231 cell line to explore expression status of cancer-related proteins. The Western blotting and immunofluorescence analysis outcomes demonstrated that TRPM8 might influence cancer cell metastasis by regulating the EMT phenotype via activating AKT/GSK-3β pathway, and the hypothesis had been supported by cell function tests. All the results demonstrated that TRPM8 significantly up-expressed in breast cancer cells and promoted their metastasis by regulating EMT via activating AKT/GSK-3β pathway, indicating TRPM8 gets the prospects of to be developed as medication or diagnostic indicator to be applied in clinical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cuzick J, Sestak I, Bonanni B, Costantino JP, Cummings S, DeCensi A, et al. Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet. 2013;381(9880):1827–34. doi:10.1016/S0140-6736(13)60140-3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Engebraaten O, Vollan HK, Borresen-Dale AL. Triple-negative breast cancer and the need for new therapeutic targets. Am J Pathol. 2013. doi:10.1016/j.ajpath.2013.05.033.

    PubMed  Google Scholar 

  3. Lee GS, Jeung EB. Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model. Am J Physiol Endocrinol Metab. 2007;293(1):E132–8. doi:10.1152/ajpendo.00666.2006.

    Article  CAS  PubMed  Google Scholar 

  4. Bolanz KA, Hediger MA, Landowski CP. The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther. 2008;7(2):271–9. doi:10.1158/1535-7163.MCT-07-0478.

    Article  CAS  PubMed  Google Scholar 

  5. Nilius B. TRP channels in disease. Biochim Biophys Acta. 2007;1772(8):805–12. doi:10.1016/j.bbadis.2007.02.002.

    Article  CAS  PubMed  Google Scholar 

  6. Gkika D, Prevarskaya N. Molecular mechanisms of TRP regulation in tumor growth and metastasis. Biochim Biophys Acta. 2009;1793(6):953–8. doi:10.1016/j.bbamcr.2008.11.010.

    Article  CAS  PubMed  Google Scholar 

  7. Prevarskaya N, Zhang L, Barritt G. TRP channels in cancer. Biochim Biophys Acta. 2007;1772(8):937–46. doi:10.1016/j.bbadis.2007.05.006.

    Article  CAS  PubMed  Google Scholar 

  8. McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416(6876):52–8. doi:10.1038/nature719.

    Article  CAS  PubMed  Google Scholar 

  9. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, et al. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108(5):705–15.

    Article  CAS  PubMed  Google Scholar 

  10. Harrington AM, Hughes PA, Martin CM, Yang J, Castro J, Isaacs NJ, et al. A novel role for TRPM8 in visceral afferent function. Pain. 2011;152(7):1459–68. doi:10.1016/j.pain.2011.01.027.

    Article  CAS  PubMed  Google Scholar 

  11. Brignell JL, Chapman V, Kendall DA. Comparison of icilin- and cold-evoked responses of spinal neurones, and their modulation of mechanical activity, in a model of neuropathic pain. Brain Res. 2008;1215:87–96. doi:10.1016/j.brainres.2008.03.072.

    Article  CAS  PubMed  Google Scholar 

  12. Proudfoot CJ, Garry EM, Cottrell DF, Rosie R, Anderson H, Robertson DC, et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol CB. 2006;16(16):1591–605. doi:10.1016/j.cub.2006.07.061.

    Article  CAS  PubMed  Google Scholar 

  13. Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD. Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One. 2011;6(9):e25894. doi:10.1371/journal.pone.0025894.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 2001;61(9):3760–9.

    CAS  PubMed  Google Scholar 

  15. Chodon D, Guilbert A, Dhennin-Duthille I, Gautier M, Telliez MS, Sevestre H, et al. Estrogen regulation of TRPM8 expression in breast cancer cells. BMC Cancer. 2010;10:212. doi:10.1186/1471-2407-10-212.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ouadid-Ahidouch H, Dhennin-Duthille I, Gautier M, Sevestre H, Ahidouch A. TRP calcium channel and breast cancer: expression, role and correlation with clinical parameters. Bull Cancer. 2012;99(6):655–64. doi:10.1684/bdc.2012.1595.

    CAS  PubMed  Google Scholar 

  17. Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D, et al. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2011;28(5):813–22. doi:10.1159/000335795.

    Article  CAS  Google Scholar 

  18. Malkia A, Morenilla-Palao C, Viana F. The emerging pharmacology of TRPM8 channels: hidden therapeutic potential underneath a cold surface. Curr Pharm Biotechnol. 2011;12(1):54–67.

    Article  CAS  PubMed  Google Scholar 

  19. Voulgari A, Pintzas A. Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta. 2009;1796(2):75–90. doi:10.1016/j.bbcan.2009.03.002.

    CAS  PubMed  Google Scholar 

  20. Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial–mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010;15(2):169–90. doi:10.1007/s10911-010-9181-1.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial–mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(2):201–12. doi:10.1007/s10911-010-9177-x.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Jin H, Morohashi S, Sato F, Kudo Y, Akasaka H, Tsutsumi S, et al. Vimentin expression of esophageal squamous cell carcinoma and its aggressive potential for lymph node metastasis. Biomed Res. 2010;31(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  23. Cai Z, Wang Q, Zhou Y, Zheng L, Chiu JF, He QY. Epidermal growth factor-induced epithelial–mesenchymal transition in human esophageal carcinoma cells—a model for the study of metastasis. Cancer Lett. 2010;296(1):88–95. doi:10.1016/j.canlet.2010.03.020.

    Article  CAS  PubMed  Google Scholar 

  24. Larue L, Bellacosa A. Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24(50):7443–54. doi:10.1038/sj.onc.1209091.

    Article  CAS  PubMed  Google Scholar 

  25. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275(47):36803–10. doi:10.1074/jbc.M005912200.

    Article  CAS  PubMed  Google Scholar 

  26. Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 2003;63(9):2172–8.

    CAS  PubMed  Google Scholar 

  27. Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, et al. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2007;26(53):7445–56. doi:10.1038/sj.onc.1210546.

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Quah SY, Dong JM, Manser E, Tang JP, Zeng Q. PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial–mesenchymal transition. Cancer Res. 2007;67(7):2922–6. doi:10.1158/0008-5472.CAN-06-3598.

    Article  CAS  PubMed  Google Scholar 

  29. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42. doi:10.1038/nrm1835.

    Article  CAS  PubMed  Google Scholar 

  30. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58. doi:10.1016/j.ceb.2005.08.001.

    Article  CAS  PubMed  Google Scholar 

  31. Mo YY, Beck WT. Association of human DNA topoisomerase IIalpha with mitotic chromosomes in mammalian cells is independent of its catalytic activity. Exp Cell Res. 1999;252(1):50–62. doi:10.1006/excr.1999.4616.

    Article  CAS  PubMed  Google Scholar 

  32. Rieger-Christ KM, Lee P, Zagha R, Kosakowski M, Moinzadeh A, Stoffel J, et al. Novel expression of N-cadherin elicits in vitro bladder cell invasion via the Akt signaling pathway. Oncogene. 2004;23(27):4745–53. doi:10.1038/sj.onc.1207629.

    Article  CAS  PubMed  Google Scholar 

  33. Song LB, Zeng MS, Liao WT, Zhang L, Mo HY, Liu WL, et al. Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res. 2006;66(12):6225–32. doi:10.1158/0008-5472.CAN-06-0094.

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs JJ, van Lohuizen M. Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim Biophys Acta. 2002;1602(2):151–61.

    CAS  PubMed  Google Scholar 

  35. Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol. 2005;168(1):29–33. doi:10.1083/jcb.200409067.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol. 2004;6(10):931–40. doi:10.1038/ncb1173.

    Article  CAS  PubMed  Google Scholar 

  37. Yamamura H, Ugawa S, Ueda T, Morita A, Shimada S. TRPM8 activation suppresses cellular viability in human melanoma. Am J Physiol Cell Physiol. 2008;295(2):C296–301. doi:10.1152/ajpcell.00499.2007.

    Article  CAS  PubMed  Google Scholar 

  38. Li Q, Wang X, Yang Z, Wang B, Li S. Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology. 2009;77(6):335–41. doi:10.1159/000264627.

    Article  CAS  PubMed  Google Scholar 

  39. Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D, et al. Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest. 2007;117(6):1647–57. doi:10.1172/JCI30168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11–21. doi:10.1038/35036035.

    Article  CAS  PubMed  Google Scholar 

  41. Weber CE, Li NY, Wai PY, Kuo PC. Epithelial–mesenchymal transition, TGF-beta, and osteopontin in wound healing and tissue remodeling after injury. J Burn Care Res Off Publ Am Burn Assoc. 2012;33(3):311–8. doi:10.1097/BCR.0b013e318240541e.

    Article  Google Scholar 

  42. Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J. 2001;359(Pt 1):1–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9. doi:10.1038/35000034.

    Article  CAS  PubMed  Google Scholar 

  44. Katoh M. Epithelial–mesenchymal transition in gastric cancer (Review). Int J Oncol. 2005;27(6):1677–83.

    CAS  PubMed  Google Scholar 

  45. Roxanis I. Occurrence and significance of epithelial–mesenchymal transition in breast cancer. J Clin Pathol. 2013;66(6):517–21. doi:10.1136/jclinpath-2012-201348.

    Article  CAS  PubMed  Google Scholar 

  46. Ouadid-Ahidouch H, Ahidouch A. K+ channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis. J Membr Biol. 2008;221(1):1–6. doi:10.1007/s00232-007-9080-6.

    Article  CAS  PubMed  Google Scholar 

  47. Potier M, Joulin V, Roger S, Besson P, Jourdan ML, Leguennec JY, et al. Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther. 2006;5(11):2946–53. doi:10.1158/1535-7163.MCT-06-0194.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Zou W, Zhou SS, Chen DD. Potassium channels and proliferation and migration of breast cancer cells. Sheng li xue bao [Acta Physiol Sin]. 2009;61(1):15–20.

    CAS  Google Scholar 

  49. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(15):5381–9. doi:10.1158/1078-0432.CCR-05-0327.

    Article  CAS  Google Scholar 

  50. Roger S, Potier M, Vandier C, Besson P, Le Guennec JY. Voltage-gated sodium channels: new targets in cancer therapy? Curr Pharm Des. 2006;12(28):3681–95.

    Article  CAS  PubMed  Google Scholar 

  51. Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 2009;15(2):124–34. doi:10.1016/j.ccr.2008.12.019.

    Article  CAS  PubMed  Google Scholar 

  52. Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial–mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest. 2009;119(12):3626–36. doi:10.1172/JCI39374.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Slominski A. Cooling skin cancer: menthol inhibits melanoma growth. Focus on TRPM8 activation suppresses cellular viability in human melanoma. Am J Physiol Cell Physiol. 2008;295(2):C293–5. doi:10.1152/ajpcell.00312.2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bai VU, Murthy S, Chinnakannu K, Muhletaler F, Tejwani S, Barrack ER, et al. Androgen regulated TRPM8 expression: a potential mRNA marker for metastatic prostate cancer detection in body fluids. Int J Oncol. 2010;36(2):443–50.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No.81272546).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Li or Rongcheng Luo.

Additional information

Liu and Chen contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, Y., Shuai, S. et al. TRPM8 promotes aggressiveness of breast cancer cells by regulating EMT via activating AKT/GSK-3β pathway. Tumor Biol. 35, 8969–8977 (2014). https://doi.org/10.1007/s13277-014-2077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2077-8

Keywords

Navigation