Skip to main content
Log in

Integrated analysis of miRNA and mRNA expression profiles in diabetic mouse kidney treated to Korean Red Ginseng

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus (DM) and its complications, including diabetic nephropathy, are rapidly increasing public health concerns. Korean Red Ginseng (KRG) is a popular herbal medicine that has many biological effects. The current literature demonstrates that KRG induced changes to the transcriptome in diabetic nephropathy mouse model are limited. Thus, we designed experiments to confirm whether changes of genes and miRNAs expression patterns in the renal cells of mice with DM, and then whether these changes are reversed by KRG.

Objective

This study aims to whether miRNAs and mRNAs expression and their relationships were contributed in the renal tissues of mice with streptozotocin (STZ)-induced diabetes.

Results

We determined that the expression levels of 46 miRNAs and 827 mRNAs expression were changed in KRG-treated DM renal cells compared to DM renal cells. In addition, we found that mRNAs expression shows anti-correlation with miRNAs expression and further validated their biological processes and signaling pathways by Gene Ontology (GO).

Conclusion

Our data suggest that KRG may regulate miRNA and gene expression in a way that relieves diabetic nephropathy in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adijanto J, Philp NJ (2012) The SLC16A family of monocarboxylate transporters (MCTs)–physiology and function in cellular metabolism, pH homeostasis, and fluid transport. Curr Top Membr 70:275–311

    Article  CAS  PubMed  Google Scholar 

  • An YR, Hwang SY (2014) Toxicology study with microRNA. Mol Cell Toxicol 10(2):127–134

    Article  CAS  Google Scholar 

  • Assmann TS et al (2017) MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocr Connect 6(8):773–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byon CH, Kim SW (2020) Regulatory effects of O-GlcNAcylation in vascular smooth muscle cells on diabetic vasculopathy. J Lipid Atheroscler 9(2):243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper ME (1998) Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352(9123):213–219

    Article  CAS  PubMed  Google Scholar 

  • De Vriese AS et al (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130(5):963–974

    Article  PubMed  PubMed Central  Google Scholar 

  • Dronavalli S et al (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4(8):444–452

    Article  CAS  PubMed  Google Scholar 

  • Fekete V et al (2010) Effect of type 2 diabetes on the gene expression pattern of rat hearts: a DNA microarray study. Cardiovasc Res 87:S116–S116

    Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girach A et al (2006) Diabetic microvascular complications: can patients at risk be identified? A review. Int J Clin Pract 60(11):1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Goligorsky MS et al (2001) Workshop: endothelial cell dysfunction leading to diabetic nephropathy: focus on nitric oxide. Hypertension 37(2 Pt 2):744–748

    Article  CAS  PubMed  Google Scholar 

  • Guay C et al (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157(4):253–264

    Article  CAS  PubMed  Google Scholar 

  • Gui Y, Ryu GH (2013) The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng. J Ginseng Res 37(2):219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwa-Kyoung Chung W-CC, Park HY, Choi SH, Kwon D, Shin W-S, Song JS, Park B-G (2019) Chronic exposure to ethylenethiourea induces kidney injury and polycystic kidney in mice. Mol Cell Tox 15(1):57–63

    Article  CAS  Google Scholar 

  • James K et al (2005) Evidence for stanniocalcin binding activity in mammalian blood and glomerular filtrate. Kidney Int 67(2):477–482

    Article  CAS  PubMed  Google Scholar 

  • Jeon BH et al (2000) Effect of Korean red ginseng on blood pressure and nitric oxide production. Acta Pharmacol Sin 21(12):1095–1100

    CAS  PubMed  Google Scholar 

  • Jovanovski E et al (2014) Modulation of endothelial function by Korean red ginseng (Panax ginseng CA Meyer) and its components in healthy individuals: a randomized controlled trial. Cardiovasc Ther 32(4):163–169

    Article  CAS  PubMed  Google Scholar 

  • Kanwar YS et al (2008) Diabetic nephropathy: Mechanisms of renal disease progression. Exp Biol Med 233(1):4–11

    Article  CAS  Google Scholar 

  • Kato M et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104(9):3432–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS et al (2002) Effect of Korea red ginseng on cerebral blood flow and superoxide production. Acta Pharmacol Sin 23(12):1152–1156

    CAS  PubMed  Google Scholar 

  • Koo BK et al (2021) Hypertriglyceridemia is an independent risk factor for cardiovascular diseases in Korean adults aged 30–49 years: a nationwide population-based study. J Lipid Atheroscler 10(1):88–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Krupa A et al (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21(3):438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok HH et al (2010) The ginsenoside protopanaxatriol protects endothelial cells from hydrogen peroxide-induced cell injury and cell death by modulating intracellular redox status. Free Radic Biol Med 48(3):437–445

    Article  CAS  PubMed  Google Scholar 

  • Lee HB et al (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14:S241–S245

    Article  CAS  PubMed  Google Scholar 

  • Lee J et al (2014) Anti-inflammation effect of exercise and Korean red ginseng in aging model rats with diet-induced atherosclerosis. Nurs Res Pract 8(3):284–291

    Google Scholar 

  • Lee SE et al (2020) Curcumin attenuates acrolein-induced COX-2 expression and prostaglandin production in human umbilical vein endothelial cells. J Lipid Atheroscler 9(1):184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SE, Park YS (2014) Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J Ginseng Res 38(1):34–39

    Article  PubMed  Google Scholar 

  • Lee YB et al (2021) Combination of statin and ezetimibe versus statin monotherapy on cardiovascular disease and type 2 diabetes incidence among adults with impaired fasting glucose: a propensity-matched nationwide cohort study. J Lipid Atheroscler 10(3):303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim WC, Chow VT (2006) Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in five study models using differential display and real-time RT-PCR. Biochimie 88(3–4):367–377

    Article  CAS  PubMed  Google Scholar 

  • Luo CW et al (2004) Paracrine regulation of ovarian granulosa cell differentiation by stanniocalcin (STC) 1: mediation through specific STC1 receptors. Mol Endocrinol 18(8):2085–2096

    Article  CAS  PubMed  Google Scholar 

  • Menghini R et al (2014) MicroRNAs in vascular aging and atherosclerosis. Ageing Res Rev 17:68–78

    Article  CAS  PubMed  Google Scholar 

  • Mirnics K, Pevsner J (2004) Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 7(5):434–439

    Article  CAS  PubMed  Google Scholar 

  • Molitch ME (1994) Ace-inhibitors and diabetic nephropathy. Diabetes Care 17(7):756–760

    Article  CAS  PubMed  Google Scholar 

  • Morris ME, Felmlee MA (2008) Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS J 10(2):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ness SA (2006) Basic microarray analysis: strategies for successful experiments. Methods Mol Biol 316:13–33

    PubMed  Google Scholar 

  • Ness SA (2007a) Microarray analysis: basic strategies for successful experiments. Mol Biotechnol 36(3):205–219

    Article  CAS  PubMed  Google Scholar 

  • Pan JS et al (2015) Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway. J Am Soc Nephrol 26(2):364–378

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Park DH (2020) REvisiting Lipids in REtinal Diseases: a focused review on age-related macular degeneration and diabetic retinopathy. J Lipid Atheroscler 9(3):406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin S, Zhang C (2011) MicroRNAs in vascular disease. J Cardiovasc Pharmacol 57(1):8–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi R et al (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59(7):365–373

    Article  CAS  PubMed  Google Scholar 

  • Rim KT, Kim SJ (2020) A toxicogenomics study of two chemicals in coffee roasting process. Mol Cell Tox 16:25–38

    Article  CAS  Google Scholar 

  • Schalkwijk CG, Stehouwer CDA (2005) Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 109(2):143–159

    Article  CAS  Google Scholar 

  • Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16:S30–S33

    Article  CAS  PubMed  Google Scholar 

  • Jung S-H, Kwon M-H, Han E-T, Park WS, Hong S-H, Kim Y-M, Ha K-S (2019) Array-based investigation of amino acids responsible for regulation of transamidase and kinase activities of transglutaminase 2. J Biochip 13(3):251–259

    Article  CAS  Google Scholar 

  • Kang SC, Lee SR, Hadiwidjaja M, Negi M, Koo HJ, Jang SA, Kwon JE, Hong H, Lim JD, Namkoong S, Kim K, Sohn E-H (2019) Mitigating effect of fermented Korean red ginseng extract with yeast and probiotics in 1-chloro-2,4-dinitrobenzene-induced skin allergic inflammation. Mol Cell Tox 15(2):111–121

    Article  CAS  Google Scholar 

  • Sheikh-Hamad D (2010) Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium. Am J Physiol Renal Physiol 298(2):F248-254

    Article  CAS  PubMed  Google Scholar 

  • Song ZM et al (2014) Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS ONE 9(11):e112699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sung JD et al (2000) Effects of red ginseng upon vascular endothelial function in patients with essential hypertension. Am J Chin Med 28(2):205–216

    Article  CAS  PubMed  Google Scholar 

  • Tesfamariam B (1994) Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 16(3):383–391

    Article  CAS  PubMed  Google Scholar 

  • Wang Q et al (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22(12):4126–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H et al (2016) Effect of Korean Red Ginseng treatment on the gene expression profile of diabetic rat retina. J Ginseng Res 40(1):1–8

    Article  PubMed  Google Scholar 

  • Zhang C (2008a) MicroRNAs: role in cardiovascular biology and disease. Clin Sci (lond) 114(12):699–706

    Article  CAS  Google Scholar 

  • Zhang CX (2008b) MicroRNAs: role in cardiovascular biology and disease. Clin Sci 114(11–12):699–706

    Article  CAS  Google Scholar 

  • Zhang Z et al (2009) MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 583(12):2009–2014

    Article  CAS  PubMed  Google Scholar 

  • Zhou MS et al (2008) Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-beta, and fibronectin with concomitant increase in nitric oxide bioavailability. Am J Physiol-Renal Physiol 295(1):F53–F59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2020R1A2C1011704) and Chung-Ang University Research Scholarship Grants 2020 to C.W. Kang.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HRP, JK and YSP; Methodology, YY, SM, HY, CWK, SEL; validation, HRP; formal analysis, HRP; investigation, HRP and SEL; resources, HRP; writing-original draft preparation, HRP; writing-review and editing, YSP; visualization, HRP; supervision, YSP; project administration, YSP; funding acquisition, YSP. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yong Seek Park.

Ethics declarations

Conflict of interest

Hye Rim Park declares that he/she has no conflict of interest. Seung Eun Lee declares that he/she has no conflict of interest. Yoojung Yi declares that he/she has no conflict of interest. Sangji Moon declares that he/she has no conflict of interest. Hyunkyung Yoon declares that he/she has no conflict of interest. Chae Won Kang declares that he/she has no conflict of interest. Jaetaek Kim declares that he/she has no conflict of interest. Yong Seek Park declares that he/she has no conflict of interest.

Human and animal rights

Ethical and experimental protocol approvals were obtained from the Institutional Animal Care and Use Committee of Kyung Hee University (Approval number: KHUASP (SE)-17–008).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.R., Lee, S.E., Yi, Y. et al. Integrated analysis of miRNA and mRNA expression profiles in diabetic mouse kidney treated to Korean Red Ginseng. Mol. Cell. Toxicol. 18, 637–646 (2022). https://doi.org/10.1007/s13273-022-00272-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-022-00272-8

Keywords

Navigation