Skip to main content
Log in

Distinct evolution of toll-like receptor signaling pathway genes in cetaceans

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

The relatively rapid spread and diversity of marine pathogens posed an initial and ongoing challenge for cetaceans (whales, dolphins, and porpoises), descendants of terrestrial mammals that transitioned from land to sea approximately 56 million years ago. Toll-like receptors (TLRs) play important roles in regulating immunity against pathogen infections by detecting specific molecular patterns and activating a wide range of downstream signaling pathways. The ever-increasing catalogue of mammalian genomes offers unprecedented opportunities to reveal genetic changes associated with evolutionary and ecological processes.

Objective

This study aimed to explore the molecular evolution of TLR signaling pathway genes in cetaceans.

Methods

Genes involved in the TLR signaling pathway were retrieved by BLAST searches using human coding sequences as queries. We tested each gene for positive selection along the cetacean branches using PAML and Hyphy. Physicochemical property changes of amino acids at all positively selected residues were assessed by TreeSAAP and visualized with WebLogo. Bovine and dolphin TLR4 was assessed using human embryonic kidney cell line HEK293, which lacks TLR4 and its co-receptor MD-2.

Results

We demonstrate that eight TLR signaling pathway genes are under positive selection in cetaceans. These include key genes in the response to Gram-negative bacteria: TLR4, CD14, and LY96 (MD-2). Moreover, 41 out of 65 positively selected sites were inferred to harbor substitution that dramatically changes the physicochemical properties of amino acids, with most of them situated in or adjacent to functional regions. We also found strong evidence that positive selection occurred in the lineage of the Yangtze finless porpoise, likely reflecting relatively recent adaptions to a freshwater milieu. Species-specific differences in TLR4 response were observed between cetacean and terrestrial species. Cetacean TLR4 was significantly less responsive to lipopolysaccharides from a terrestrial E. coli strain, possibly a reflection of the arms race of host–pathogen co-evolution faced by cetaceans in an aquatic environment.

Conclusion

This study provides further impetus for studies on the evolution and function of the cetacean immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499

    Article  CAS  PubMed  Google Scholar 

  • Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol 28:1703–1715

    Article  CAS  PubMed  Google Scholar 

  • Anwar MA, Choi S (2014) Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar Drugs 12:2485–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beineke A, Siebert U, Wohlsein P, Baumgärtner W (2010) Immunology of whales and dolphins. Vet Immunol Immunopathol 133:81–94

    Article  CAS  PubMed  Google Scholar 

  • Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24:528–533

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300

    Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST + : architecture and applications. BMC Bioinform 10:421

    Article  CAS  Google Scholar 

  • Consortium U (2014) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212

    Article  CAS  Google Scholar 

  • Coordinators NR (2017) Database resources of the national center for biotechnology information. Nucleic Acids Res 45:D12

    Article  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darfour-Oduro KA, Megens H-J, Roca AL, Groenen MA, Schook LB (2016) Evolutionary patterns of Toll-like receptor signaling pathway genes in the Suidae. BMC Evol Biol 16:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Obeid A, Hassib A, Pontén F, Westermark B (2006) Effect of herbal melanin on IL-8: a possible role of Toll-like receptor 4 (TLR4). Biochem Biophys Res Commun 344:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald KA, Rowe DC, Golenbock DT (2004) Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes Infect 6:1361–1367

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541

    Article  CAS  PubMed  Google Scholar 

  • Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, Mcgowen MR (2013) A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol 66:479–506

    Article  PubMed  Google Scholar 

  • Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76:141–165

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2009) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  PubMed  CAS  Google Scholar 

  • Grabiec A, Meng G, Fichte S, Bessler W, Wagner H, Carsten JK (2004) Human but not murine toll-like receptor 2 discriminates between tri-palmitoylated and tri-lauroylated peptides. J Biol Chem 279:48004–48012

    Article  CAS  PubMed  Google Scholar 

  • Gui D, Jia K, Xia J, Yang L, Chen J, Wu Y, Yi M (2013) De novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome to identify putative genes involved in the aquatic adaptation and immune response. PLoS One 8:e72417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Qin S, Song X, Li Y, Jin P, Chen L, Ma F (2013) Evolutionary rate patterns of genes involved in the Drosophila Toll and Imd signaling pathway. BMC Evol Biol 13:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishengoma E, Agaba M (2017) Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification. BMC Evol Biol 17:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE (2016) The critical role of toll-like receptors—from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev 15:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopaedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keestra AM, Zoete MR, De Rémon AMH, Van Aubel, Van Putten JPM (2008) Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol 45:1298–1307

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Staschke K, Bulek K, Yao J, Peters K, Oh K-H, Vandenburg Y, Xiao H, Qian W, Hamilton T (2007) A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med 204:1025–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  CAS  Google Scholar 

  • Leulier F, Bruno L (2008) Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 9:165

    Article  CAS  PubMed  Google Scholar 

  • Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11:191–212

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xu C, Hsu L-C, Luo Y, Xiang R, Chuang T-H (2010) A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol Immunol 47:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Manna SK, Ramesh GT (2005) Interleukin-8 induces nuclear transcription factor-kappaB through a TRAF6-dependent pathway. J Biol Chem 280:7010–7021

    Article  CAS  PubMed  Google Scholar 

  • McCallum H, Harvell D, Dobson A (2003) Rates of spread of marine pathogens. Ecol Lett 6:1062–1067

    Article  Google Scholar 

  • Mclaughlin RW, Chen MM, Zheng JS, Wang D (2012) Analysis of the bacterial diversity in the fecal material of the endangered Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis. Mol Biol Rep 39:5669–5676

    Article  CAS  PubMed  Google Scholar 

  • Mogensen KE, Lewerenz M, Reboul J, Lutfalla G, Uzé G (1999) The type I interferon receptor: structure, function, and evolution of a family business. J Interferon Cytokine Res 19:1069–1098

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP (2009) Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. P Natl Acad Sci 106:7073–7078

    Article  Google Scholar 

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A (2008) Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 60:727–735

    Article  CAS  PubMed  Google Scholar 

  • Nijland R, Hofland T, van Strijp JA (2014) Recognition of LPS by TLR4: potential for anti-inflammatory therapies. Mar Drugs 12:4260–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Muroi M, Tanamoto K (2001) N-linked glycosylations at Asn(26) and Asn(114) of human MD-2 are required for toll-like receptor 4-mediated activation of NF-kappaB by lipopolysaccharide. J Immunol 167:3354–3359

    Article  CAS  PubMed  Google Scholar 

  • O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353

    Article  PubMed  CAS  Google Scholar 

  • Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, Linsley PS (1995) Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J Biol Chem 270:21181–21187

    Article  CAS  PubMed  Google Scholar 

  • Pei C, Lei XY, Yuan XP, Wang D, Zhao QZ, Zhang QY (2012) Herpes-like Virus Infection in Yangtze Finless Porpoise (Neophocaena phocaenoides): pathology, ultrastructure and molecular analysis. J Wildl Dis 48:235–237

    Article  PubMed  Google Scholar 

  • Picard C, Puel A, Bonnet M, Ku C-L, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299:2076–2079

    Article  CAS  PubMed  Google Scholar 

  • Pond SLK, Muse SV (2004) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  PubMed  CAS  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. P Natl Acad Sci 102:9577–9582

    Article  CAS  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207

    Article  CAS  PubMed  Google Scholar 

  • Ruan R, Ruan J, Wan XL, Zheng Y, Chen MM, Zheng JS, Wang D (2016) Organization and characteristics of the major histocompatibility complex class II region in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Sci Rep 6:22471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter KS, Brcic M, Franchini M, Jungi TW (2007) Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Vet Immunol Immunopathol 118:92–104

    Article  CAS  PubMed  Google Scholar 

  • Shen T, Xu S, Wang X, Yu W, Zhou K, Yang G (2012) Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans. BMC Evol Biol 12:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  • Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW (2007) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genom 9:68–76

    Google Scholar 

  • Thewissen JG, Cooper LN, Clementz MT, Bajpai S, Tiwari B (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190

    Article  CAS  PubMed  Google Scholar 

  • Tian R, Chen M, Chai S, Rong X, Chen B, Ren W, Xu S, Yang G (2018) Divergent selection of pattern recognition receptors in mammals with different ecological characteristics. J Mol Evol 86:138–149

    Article  CAS  PubMed  Google Scholar 

  • Velová H, Gutowskading MW, Burt DW, Vinkler M (2018) Toll-like receptor evolution in birds: gene duplication, pseudogenisation and diversifying selection. Mol Biol Evol 35:2170–2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wlasiuk G, Nachman MW (2010) Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol 27:2172–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Peng S, Zhou K, Yang G (2007) Sequence variability at three MHC loci of finless porpoises (Neophocaena phocaenoides). Immunogenetics 59:581–592

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Ren W, Zhou X, Zhou K, Yang G (2010) Sequence polymorphism and geographical variation at a positively selected MHC-DRB gene in the finless porpoise (Neophocaena phocaenoides): implication for recent differentiation of the Yangtze Finless porpoise? J Mol Evol 71:6–22

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Tian R, Lin Y, Yu Z, Zhang Z, Niu X, Wang X, Yang G (2019) Widespread positive selection on cetacean TLR extracellular domain. Mol Immunol 106:135–142

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2000) Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol 51:423–432

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409–418

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zhang P, Wang K, Liu M, Jing L, Zheng J, Ding W, Xu W, Lin M, Dong L (2018) Genome sequence of the freshwater Yangtze Finless Porpoise. Genes 9:213

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Sun X, Chen M, Li L, Ren W, Xu S, Yang G (2019) Genomic organization and phylogeny of MHC class II loci in cetaceans. J Hered 110:332–339

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Gu J, Lamont SJ, Gu X (2007) Evolutionary analysis for functional divergence of the toll-like receptor gene family and altered functional constraints. J Mol Evol 65:119–123

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Guang X, Sun D, Xu S, Li M, Seim I, Jie W, Yang L, Zhu Q, Xu J (2018) Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun 9:1276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15:405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Program of Research and Development, Ministry of Science and Technology of China (Grant no. 2016YFC0503200 to G.Y. and S.X.), the Key Project of the National Natural Science Foundation of China (NSFC) (Grant no. 31630071 to G.Y.), the National Natural Science Foundation of China (NSFC) (Grant nos. 31570379 and 31772448 to S.X; Grant no. 31872219 to W.R.), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the China Postdoctoral Science Foundation (Grant no. 2018M642278 to R.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixia Xu or Guang Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

The authors consent to publish and copyright transfer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, R., Seim, I., Zhang, Z. et al. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans. Genes Genom 41, 1417–1430 (2019). https://doi.org/10.1007/s13258-019-00861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00861-3

Keywords

Navigation