Skip to main content

Advertisement

Log in

Sequence Polymorphism and Geographical Variation at a Positively Selected MHC-DRB Gene in the Finless Porpoise (Neophocaena phocaenoides): Implication for Recent Differentiation of the Yangtze Finless Porpoise?

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Sequence polymorphism at the MHC class II DRB locus was investigated in three finless porpoise (Neophocaena phocaenoides) populations in Chinese waters. Intragenic recombination and strong positive selection were the main forces in generating sequence diversity in the DRB gene. MHC sequence diversity changed significantly along the study period. Significant decrease in heterozygosity and lost alleles have been detected in the Yangtze River population and South China Sea population since 1990. Furthermore, there is a trend of increasing population differentiation over time. Especially, the genetic differentiation between the Yangtze River population and the Yellow Sea population was very low prior to 1990 (F ST = 0.036, P = 0.009), but became very significant after 1990 (F ST = 0.134, P < 0.001), suggesting a recent augmentation of genetic differentiation between both populations probably in a relatively short-term period. Porpoises from the Yangtze River displayed divergent frequencies of shared and private alleles from those displayed by two marine populations, which suggest that the former riverine population has been under a different selection regime (characteristic of a fresh water environment) than that of its marine counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494

    Article  CAS  PubMed  Google Scholar 

  • Alcaide M, Edwards S, Negro JJ, Serrano D, Tella J (2008) Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol Ecol 17:2652–2665

    Article  CAS  PubMed  Google Scholar 

  • Andersson L, Mikko S (1995) Generation of MHC class II diversity by intra- and intergenic recombination. Immunol Rev 143:5–12

    Article  CAS  PubMed  Google Scholar 

  • Avise JC (2000) Phylogeography. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Baker CS, Clapham P (2004) Modelling the past and future of whales and whaling. Trends Ecol Evol 19:365–371

    Article  Google Scholar 

  • Baker CS, Vant MD, Dalebout ML, Lento GM, O’Brien SJ, Yuhki N (2006) Diversity and duplication of DQB and DRB-like genes of the MHC in baleen whales (suborder: Mysticeti). Immunogenetics 58:283–296

    Article  CAS  PubMed  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05: population genetics software for Windows TM. Université de Montpellier II, Montpellier

    Google Scholar 

  • Bergstrom TF, Josefsson A, Erlich HA, Gyllensten U (1998) Recent origin of HLA-DRB1 alleles and implications for human evolution. Nat Genet 18:237–242

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL (1993) 3-Dimensional structure of the human class-II histocompatibility antigen HLADR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Charbonnel N, Pemberton J (2005) A long term genetic survey of an ungulate population reveals balancing selection acting on MHC through spatial and temporal fluctuations in selection. Heredity 95:377–388

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Bruford MW, Xu SX, Zhou KY, Yang G (2010) Microsatellite variation and significant population genetic structure of endangered finless porpoises (Neophocaena phocaenoides) in Chinese coastal waters and the Yangtze River. Mar Biol. doi:10.1007/s00227-010-1420-x

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Cutrera AP, Lacey EA (2007) Trans-species polymorphism and evidence of selection on class II MHC loci in tuco-tucos (Rodentia: Ctenomyidae). Immunogenetics 59:937–948

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. http://cmpg.unibe.ch/software/arlequin3/

  • Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman, New York

    Google Scholar 

  • Flores-Ramirez S, Miller RD, Urban-Ramirez J (2004) Major histocompatibility complex I polymorphism in a cetacean: the gray whale (Eschrichtius robustus). Mar Mammal Sci 20:262–273

    Article  Google Scholar 

  • Furlong RF, Yang ZH (2008) Diversifying and purifying selection in the peptide binding region of DRB in mammals. J Mol Evol 66:384–394

    Article  CAS  PubMed  Google Scholar 

  • Gao AL, Zhou KY (1995a) Geographical variation of external measurements and three subspecies of Neophocaena Phocaenoides in Chinese waters. Acta Theriol Sin 15:81–92 (in Chinese)

    Google Scholar 

  • Gao AL, Zhou KY (1995b) Geographical variation of postcranial skeleton among the populations of Neophocaena in Chinese waters. Acta Theriol Sin 15:246–253 (in Chinese)

    Google Scholar 

  • Gao AL, Zhou KY (1995c) Geographical variation of skull among the populations of Neophocaena in Chinese waters. Acta Theriol Sin 15:161–169 (in Chinese)

    Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57(8):1707–1722

    CAS  PubMed  Google Scholar 

  • Goudet J (2002) FSTAT: a program to estimate and test gene diversities and fixation indices. Version 2.9.3.2. http://www.unil.ch/izea/softwares/fstat.html (cited 5 Apr. 2002; verified19 Feb. 2004). Institut d’Ecologie, Laboratoire de Zoologie, Lausanne, Switzerland

  • Hayashi K, Nishida S, Yoshida H, Goto M, Pastene LA, Koike H (2003) Sequence variation of the DQB allele in the cetacean MHC. Mamm Study 28:89–96

    Article  Google Scholar 

  • Hayashi K, Yoshida H, Nishida S, Goto M, Pastene LA, Kanda N, Baba Y, Koike H (2006) Genetic variation of the MHC DQB locus in the finless porpoise (Neophocaena phocaenoides). Zool Sci 23:147–153

    Article  CAS  PubMed  Google Scholar 

  • Hoelzel AR, Stephens JC, O’Brien SJ (1999) Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. Mol Biol Evol 16:611–618

    CAS  PubMed  Google Scholar 

  • Hudson RR (2001) Two-locus sampling distributions and their application. Genetics 159:1805–1817

    CAS  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MJ (1999) Immunobiology: the immune system in health and diseases. Garland Science Publishing, New York

    Google Scholar 

  • Kennedy LJ, Ryvar R, Gaskell RM, Addie DD, Willoughby K, Carter SD, Thomson W, Ollier WER, Radford AD (2002) Sequence analysis of MHC DRB alleles in domestic cats from the United Kingdom. Immunogenetics 54:348–352

    Article  CAS  PubMed  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J (1987) Origin of major histocompatibility complex polymorphism-the transspecies hypothesis. Hum Immunol 19:155–162

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    CAS  PubMed  Google Scholar 

  • Klein J, Satta Y, O’hUigin (1993) The molecular descent of the major histocompatibility complex. Annu Rev Immunol 11:269–295

    Article  CAS  PubMed  Google Scholar 

  • Koskinen MT, Haugen TO, Primmer CR (2002) Contemporary fisherian life-history evolution in small salmonid populations. Nature 419:826–830

    Article  CAS  PubMed  Google Scholar 

  • Lukoschek V, Waycott M, Keogh JS (2008) Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis. Mol Ecol 17:3062–3077

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  CAS  PubMed  Google Scholar 

  • McCallum HI, Kuris A, Harvell CD, Lafferty KD, Smith GW, Porter J (2004) Does terrestrial epidemiology apply to marine systems? Trends Ecol Evol 19:585–591

    Article  Google Scholar 

  • McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241

    CAS  PubMed  Google Scholar 

  • Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557

    Article  Google Scholar 

  • Munguia-Vega A, Esquer-Garrigos Y, Rojas-Bracho L, Vazquez-Juarez R, Castro-Prieto A, Flores-Ramirez S (2007) Genetic drift vs natural selection in a long-term small isolated population: major histocompatibility complex class II variation in the Gulf of California endemic porpoise (Phocoena sinus). Mol Ecol 16:4051–4065

    Article  CAS  PubMed  Google Scholar 

  • Murray BW, White BN (1998) Sequence variation at the major histocompartibility complex DRB loci in beluga (Delphinapterus leucas) and narwhal (Monodon monoceros). Immunogenetics 48:242–252

    Article  CAS  PubMed  Google Scholar 

  • Murray BW, Malik S, White BN (1995) Sequence variation at the major histocompatibility complex locus DQB in beluga whales (Delphinapterus leucas). Mol Biol Evol 12:582–593

    CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Ni JY, Zhou KY (1988) Rencular structural indices and urinary concentrating capacity of Neophocaena Phocaenoides. Acta Theriol Sin 34:243–250 (in Chinese)

    Google Scholar 

  • O’hUigin C (1995) Quantifying the degree of convergence in primate Mhc-DRB genes. Immunol Rev 143:123–140

    Article  PubMed  Google Scholar 

  • Piertney SB, Oliver Mk (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    CAS  PubMed  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  • Reeves RR, Wang JY, Leatherwood S (1997) The Finless Porpoise, Neophocaena phocaenoides (G. Cuvier 1829) a summary of current knowledge and recommendations for conservation action. Asian Mar Biol 14:111–143

    Google Scholar 

  • Reeves RR, Jefferson TA, Kasuya T, Smith BD, Wang Ding, Wang P, Wells RS, Würsig B, Zhou K (2000) Report of the workshop to develop a conservation Action Plan for the Yangtze River Finless Porpoise, Ocean Park, Hong Kong, 16–18 September 1997. In: Reeves RR, Smith BD, Kasuya T (eds) Biology and conservation of freshwater Cetaceans in Asia, IUCN/SSC Occasional Paper No. 23. Gland, Switzerland and Cambridge, UK, pp 67–80

  • Reeves RR, Smith BD, Crespo EA, di Sciara GN (compilers) (2003) Dolphins, whales and porpoises: 2002–2010 conservation action plan for the world’s cetaceans. IUCN/SSC Cetacean Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK

  • Richman AD, Herrera LG, Nash D (2003a) Evolution of MHC class II Eβ diversity within the genus Peromyscus. Genetics 164:289–297

    Article  CAS  PubMed  Google Scholar 

  • Richman AD, Herrera LG, Nash D, Schierup HM (2003b) Relative roles of mutation and recombination in generating allelic polymorphism at an MHC class II locus in Peromyscus maniculatus. Genet Res 82:89–99

    Article  CAS  PubMed  Google Scholar 

  • Robinson J, Malik A, Parham P, Bodmer JG, Marsh SGE (2000) IMGT/HLA database—a sequence database for the human major histocompatibility complex. Tissue Antigens 55:280–287

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogeneticinference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Schaschl H, Suchentrunk F, Hammer S, Goodman SJ (2005) Recombination and the origin of sequence diversity in the DRB MHC class II locus in chamois (Rupicapra spp.). Immunogenetics 57:108–115

    Article  CAS  PubMed  Google Scholar 

  • Schierup MH, Vekemans X, Charlesworth D (2000) The effect of subdivision on variation at multi-allelic loci under balancing selection. Genet Res 76:51–62

    Article  CAS  PubMed  Google Scholar 

  • Shirakihara M, Shirakihara K, Takemura A (1994) Distribution and seasonal density of the finless porpoise, Neophocaena phocaenoides, in the coastal waters of western Kyushu, Japan. Fish Sci 60:41–46

    Google Scholar 

  • Shum BP, Guethlein L, Flodin LR, Adkison MD, Hedrick RP, Nehring RB, Stet RJM, Secombes C, Parham P (2001) Modes of Salmonid MHC class I and II evolution differ from the primate paradigm. J Immunol 166:3297–3308

    CAS  PubMed  Google Scholar 

  • Slade R (1992) Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology. Proc R Soc Lond B 249:163–171

    Article  CAS  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16–34

    Article  PubMed  Google Scholar 

  • Sullivan J, Joyce P (2005) Model selection in phylogenetics. Annu Rev Ecol Evol Syst 36:445–466

    Article  Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods). version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Takahata N, Satta Y (1998) Selection, convergence, and intragenic recombination in HLA diversity. Genetica 157:157–169

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Trowsdale J, Gorves V, Arnason A (1989) Limited MHC polymorphism in whales. Immunogenetics 29:19–24

    Article  CAS  PubMed  Google Scholar 

  • van Tienderen PH, de Haan AA, van der Linden G, Vosman B (2002) Biodiversity assessment using markers for ecologically important traits. Trends Ecol Evol 17:577–582

    Article  Google Scholar 

  • Vassilakos D, Natoli A, Dahlheim M, Hoelzel R (2009) Balancing and directional selection at exon-2 of the MHC DQB1 locus among populations of odontocete cetaceans. Mol Biol Evol 26(3):681–689

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Liu R, Zhang X, Yang J, Wei Z, Zhao Q, Wang X (2000) Status and conservation of the Yangtze Finless Porpoise. In: Reeves RR, Smith BD, Kasuya T (eds) Biology and conservation of freshwater Cetaceans in Asia IUCN SSC Occasional Paper No. 23. IUCN, Gland, Switzerland and Cambridge, UK, pp 81–85

  • Weber DS, Stewart BS, Schienman J, Lehman N (2004) Major histocompatibility complex variation at three class II loci in the northern elephant seal. Mol Ecol 13:711–718

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complimentarity. J Exp Med 132:211–250

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Brandley MC, Xu SX, Zhou KY, Yang G (2009) Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evol Biol 9(1):20

    Article  PubMed  Google Scholar 

  • Xu SX, Sun P, Zhou KY, Yang G (2007) Sequence variability at three MHC loci of finless porpoises (Neophocaena phocaenoides). Immunogenetics 59:581–592

    Article  CAS  PubMed  Google Scholar 

  • Xu SX, Chen BY, Zhou KY, Yang G (2008) High sequence similarity at three MHC loci between baiji and finless porpoise: trans-species or convergent evolution? Mol Phylogenet Evol 47:36–44

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Nielsen R, Goldman N, Pedersen AMK (2000) Codon substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  Google Scholar 

  • Yang G, Ren WH, Zhou KY, Liu S, Ji GQ, Yan J, Wang L (2002) Population genetic structure of finless porpoises Neophocaena phocaenoides in Chinese waters, inferred from mitochondrial control region sequences. Mar Mammal Sci 18:336–347

    Article  Google Scholar 

  • Yang G, Liu S, Ren WH (2003) Mitochondrial control region variability of baiji and the Yangtze finless porpoises, two sympatric small cetaceans in the Yangtze river. Acta Theriol 48:469–483

    Google Scholar 

  • Yang G, Yan J, Zhou KY, Wei FW (2005) Sequence variation and gene duplication at MHC DQB loci of Baiji (Lipotes vexillifer), a Chinese river dolphin. J Hered 96:310–317

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Guo L, Bruford MW, Wei FW, Zhou KY (2008) Mitochondrial phylogeography and population history of finless porpoises in Sino-Japanese waters. Biol J Linn Soc 95:193–204

    Article  Google Scholar 

  • Yoshida H, Shirakihara K, Shirakihara M, Takemura A (1995) Geographic variation in the skull morphology of the finless porpoise Neophocaena phocaenoides in Japanese waters. Fish Sci 61:555–558

    CAS  Google Scholar 

  • Zeng B, Xu L, Yue BS, Liu ZJ, Zou FD (2008) Molecular phylogeography and genetic differentiation of blue sheep Pseudois nayaur szechuanensis and Pseudois schaeferi in China. Mol Phylogenet Evol 48:387–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Wang KX (1999) Population variability analysis of the Yangtze finless porpoises. Acta Ecol Sin 19:529–533 (in Chinese)

    Google Scholar 

  • Zhang X, Liu R, Zhao Q, Zhang G, Wei Z, Wang X, Yang J (1993) The population of Finless Porpoise in the middle and lower reaches of Yangtze River. Acta Theriol Sin 13:260–270 (in Chinese)

    Google Scholar 

  • Zhang JZ, Nielsen R, Yang ZH (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Anli Gao, Mr. Xin-Rong Xu, Mr. Hua Chen, and Dr. Qing Chang for their contribution in collecting samples for many years. A special thank-you is owed to Mr. Jun-Xiao Xu, for his assistance with the W–K analysis and positive selection analysis using the PAML 4 program suite. This research was financially supported by the key project of National Natural Science Foundation of China (NSFC) under grant nos. 30830016, and 30670294; the Program for New Century Excellent Talents in University (grant no. NCET-07-0445), the Ministry of Education of China; the Specialized Research Fund for the Doctoral Program of Higher Education (grant no. SRFDP 20060319002), the Ministry of Education of China; and the major project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant no. 07KJA18016). Finally, a special thank-you is also due from the authors to anonymous referees and editors for their critical comments which greatly helped to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Ren, W., Zhou, X. et al. Sequence Polymorphism and Geographical Variation at a Positively Selected MHC-DRB Gene in the Finless Porpoise (Neophocaena phocaenoides): Implication for Recent Differentiation of the Yangtze Finless Porpoise?. J Mol Evol 71, 6–22 (2010). https://doi.org/10.1007/s00239-010-9357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9357-8

Keywords

Navigation