Skip to main content
Log in

Whole RNA-sequencing and gene expression analysis of Trichoderma harzianum Tr-92 under chlamydospore-producing condition

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Trichoderma is one of the most important biocontrol fungi, which could produce mycelia, conidiospores, and chlamydospores three types of propagules under different conditions. Chlamydospores are produced in harsh conditions in various fungi, and may be more resistant to adverse conditions. However, the knowledge associated with the mechanism of chlamydospore formation remained unclear in Trichoderma.

Objectives

This study is aimed to explore the essential genes and regulatory pathways associated with chlamydospore formation in Trichoderma.

Methods

The culture condition, survival rate, and biocontrol effects of chlamydospores and conidiospores from Trichoderma.harzianum Tr-92 were determined. Furthermore, the whole transcriptome profiles of T. harzianum Tr-92 under chlamydospore-producing and chlamydospore-nonproducing conditions were performed.

Results

T. harzianum Tr-92 produced chlamydospores under particular conditions, and chlamydospore-based formulation of T. harzianum Tr-92 exhibited higher biocontrol ability against Botrytis cinerea in cucumber than conidoiospore-based formulation. In the transcriptome analysis, a total of 2,029 differentially expressed genes (DEGs) were identified in T. harzianum Tr-92 under chlamydospore-producing condition, compared to that under chlamydospore-nonproducing condition. GO classification indicated that the DEGs were significantly enriched in 284 terms among biological process, cellular components and molecular function categories. A total of 19 pathways were observed with DEGs by KEGG analysis. Furthermore, fifteen DEGs were verified by quantitative real-time PCR, and the expression profiles were consistent with the transcriptome data.

Conclusion

The results would provide a basis on the molecular mechanisms underlying Trichoderma sporulation, which would assist the development and application of fungal biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blaszczyk L, Basinska-Barczak A et al (2017) Suppressive effect of Trichoderma spp. on toxigenic Fusarium species. Pol J Microbiol 66(1):85–100

    Article  PubMed  Google Scholar 

  • Bottcher B, Pollath C et al (2016) Candida species Rewired hyphae developmental programs for chlamydospore formation. Front Microbiol 7:1697

    Article  PubMed  PubMed Central  Google Scholar 

  • Campanha NH, Neppelenbroek KH et al (2005) Phenotypic methods and commercial systems for the discrimination between C. albicans and C. dubliniensis. Oral Dis 11(6):392–398

    Article  CAS  PubMed  Google Scholar 

  • Carruthers M, Yurchenko AA et al (2018) De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genom 19(1):32

    Article  CAS  Google Scholar 

  • Choudhri P, Rani M et al (2018) De novo sequencing, assembly and characterisation of Aloe vera transcriptome and analysis of expression profiles of genes related to saponin and anthraquinone metabolism. BMC Genom 19(1):427

    Article  CAS  Google Scholar 

  • Deng JJ, Huang WQ et al (2018) Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb Technol 112:35–42

    Article  CAS  PubMed  Google Scholar 

  • Eyal J, Baker CP et al (1997) Large-scale production of chlamydospores of Gliocladium virens strain GL-21 in submerged culture. J Ind Microbiol Biotechnol 19(3):163–168

    Article  CAS  Google Scholar 

  • Fay JV, Watkins CJ et al (2018) Yerba mate (Ilex paraguariensis. A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles. BMC Genom 19(1):891

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Niu B et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giosa D, Felice MR et al (2017) Whole RNA-sequencing and transcriptome assembly of Candida albicans and Candida africana under chlamydospore-inducing conditions. Genome Biol Evol 9(7):1971–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harel YM, Mehari ZH et al (2014) Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104(2):150–157

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84(4):377–393

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2006) Overview of Mechanisms and uses of Trichoderma spp. Phytopathology 96(2):190–194

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR et al (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Vujanovic V (2016) Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production. Appl Microbiol Biotechnol 100(12):5257–5272

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sun R et al (2016a) Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian J Microbiol 56(3):318–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YQ, Song K et al (2016b) Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation. J Zhejiang Univ Sci B 17(8):619–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Medina A, Fernandez I et al (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Nunez L, Riquelme M (2015) Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa. Fungal Genet Biol 85:58–70

    Article  CAS  PubMed  Google Scholar 

  • Ment D, Gindin G et al (2010) The effect of temperature and relative humidity on the formation of Metarhizium anisopliae chlamydospores in tick eggs. Fungal Biol 114(1):49–56

    Article  PubMed  Google Scholar 

  • Mishra DS, Prajapati CR et al (2012) Relative bio-efficacy and shelf-life of mycelial fragments, conidia and chlamydospores of Trichoderma harzianum. Vegetos 25(1):225–232

    Google Scholar 

  • Moran GP, MacCallum DM et al (2007) Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Mol Microbiol 66(4):915–929

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Noble SM, Gianetti BA et al (2017) Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol 15(2):96–108

    Article  CAS  PubMed  Google Scholar 

  • O’Connor L, Caplice N et al (2010) Differential filamentation of Candida albicans and Candida dubliniensis Is governed by nutrient regulation of UME6 expression. Eukaryot Cell 9(9):1383–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palige K, Linde J et al (2013) Global transcriptome sequencing identifies chlamydospore specific markers in Candida albicans and Candida dubliniensis. PLoS One 8(4):e61940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai S, Kashyap PL et al (2016) Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springerplus 5(1): 1939

  • Shoresh M, Harman GE et al (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Staib P, Morschhauser J (2007) Chlamydospore formation in Candida albicans and Candida dubliniensis—an enigmatic developmental programme. Mycoses 50(1):1–12

    Article  PubMed  Google Scholar 

  • Steindorff AS, Ramada MH et al (2014) Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genom 15:204

    Article  CAS  Google Scholar 

  • Sun ZB, Zhang J et al (2018) Identification of genes related to chlamydospore formation in Clonostachys rosea 67-1. Microbiologyopen 8(1):e00624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan J, van Koten C et al (2016) Formulations for delivering Trichoderma atroviridae spores as seed coatings, effects of temperature and relative humidity on storage stability. J Appl Microbiol 120(2):425–431

    Article  PubMed  Google Scholar 

  • Tzelepis G, Dubey M et al (2015) Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea. Microbiology 161(7):1407–1419

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Brar SK et al (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37(1):1–20

    Article  Google Scholar 

  • Vos CM, De Cremer K et al (2015) The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol Plant Pathol 16(4):400–412

    Article  PubMed  Google Scholar 

  • Whiteway M, Bachewich C (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol 61:529–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Huang Y et al (2019) Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genom 20(1):144

    Article  Google Scholar 

  • Zhang J, Sun Z et al (2017) Identification of suitable reference genes during the formation of chlamydospores in Clonostachys rosea 67-1. Microbiologyopen 6(5):e00505

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development program of China “Topsoil regulation and soil fertility improvement of the wheat-maize field in northern of Huang-Huai-Hai” (2017YFD0300905), the Key Fundamental Research Program of Hebei Province (15962904D), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2015ZX07204-007), and National Natural Science Foundation of China (31401212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Huang.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest.

Research involving human and animal rights

This article does not contain any studies with animals or human subjects performed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Huang, Y., Jia, Z. et al. Whole RNA-sequencing and gene expression analysis of Trichoderma harzianum Tr-92 under chlamydospore-producing condition. Genes Genom 41, 689–699 (2019). https://doi.org/10.1007/s13258-019-00812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00812-y

Keywords

Navigation