Skip to main content

Advertisement

Log in

Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Global food security research is seeking eco-friendly solutions to control mycotoxins in grain infected by fungi (molds). In particular, mycotoxigenic Fusarium spp. outbreak is a chronic threat for cereal grain production, human, and animal health. In this review paper, we discuss up-to-date biological control strategies in applying mycoparasites as biological control agents (BCA) to prevent plant diseases in crops and mycotoxins in grain, food, and feed. The aim is to increase food safety and to minimize economic losses due to the reduced grain yield and quality. However, recent papers indicate that the study of the BCA specialists with biotrophic lifestyle lags behind our understanding of the BCA generalists with necrotrophic lifestyle. We examine critical behavioral traits of the two BCA groups of mycoparasites. The goal is to highlight their major characteristics in the context of future research towards an efficient biocontrol strategy against mycotoxin-producing Fusarium species. The emphasis is put on biocontrol of Fusarium graminearum, F. avenaceum, and F. culmorum causing Fusarium head blight (FHB) in cereals and their mycotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54(2):396–402. doi:10.1021/np50074a008

    Article  CAS  Google Scholar 

  • Awad WA, Ghareeb K, Bohm J, Zentek J (2010) Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit Contam Part A, Chem Anal Control, Expo Risk Assess 27(4):510–520. doi:10.1080/19440040903571747

    Article  CAS  Google Scholar 

  • Ayers TT (1935) Parasitism of Dispira cornuta. Mycologia 27(3):235–261. doi:10.2307/3754148

    Article  Google Scholar 

  • Bamburg JR, Strong FM (1969) Mycotoxins of the trichothecane family produced by Fusarium tricinctum and Trichoderma lignorum. Phytochemistry 8(12):2405–2410. doi:10.1016/S0031-9422(00)88162-5

    Article  CAS  Google Scholar 

  • Barnett HL (1963) The nature of mycoparasitism by fungi. Annu Rev Microbiol 17(1):1–14. doi:10.1146/annurev.mi.17.100163.000245

    Article  Google Scholar 

  • Benoni H, Taraz K, Korth H, Pulverer G (1990) Characterization of 6-pentyl-α-pyrone from the soil fungus Trichoderma koningii. Sci Nat 77(11):539–540. doi:10.1007/BF01139267

    Article  CAS  Google Scholar 

  • Boosalis MG (1964) Hyperparasitism. Annu Rev Phytopathol 2(1):363–376. doi:10.1146/annurev.py.02.090164.002051

    Article  Google Scholar 

  • Borrego-Benjumea A, Basallote-Ureba MJ, Melero-Vara JM, Abbasi PA (2014) Characterization of Fusarium isolates from asparagus fields in Southwestern Ontario and influence of soil organic amendments on Fusarium crown and root rot. Phytopathology 104(4):403–415

    Article  CAS  PubMed  Google Scholar 

  • Brian P (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668

    Article  CAS  Google Scholar 

  • Brian P, McGowan J (1945) Viridin: a highly fungistatic substance produced by Trichoderma viride. Nature 156(3953):144–145

    Article  CAS  Google Scholar 

  • Burka LT, Doran J, Wilson BJ (1982) Enzyme inhibition and the toxic action of moniliformin and other vinylogous α-ketoacids. Biochem Pharmacol 31(1):79–84. doi:10.1016/0006-2952(82)90240-4

    Article  CAS  PubMed  Google Scholar 

  • Butler EE (1957) Rhizoctonia solani as a parasite of fungi. Mycologia 49(3):354–373. doi:10.2307/3755685

    Article  Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Fungi as biocontrol agents progress, problems and potential. CABI Pub, Oxon, UK; New York

    Book  Google Scholar 

  • Caldwell RW, Tuite J, Stob M, Baldwin R (1970) Zearalenone production by Fusarium species. Appl Microbiol 20(1):31–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutierrez S (2011) Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol 77(14):4867–4877. doi:10.1128/aem.00595-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CEMA (2015) European agrilculture machinery. Global food security: recognizing smart farm machinery as a key enabling technology to produce more food more sustainably & feed a growing world population. http://cema-agri.org/sites/default/files/Global%20Food%20Security%20-%20the%20role%20of%20smart%20machinery.pdf. Accessed 29 Dec 2015

  • Choi SU, Choi EJ, Kim KH, Kim NY, Kwon BM, Kim SU, Bok SH, Lee SY, Lee CO (1996) Cytotoxicity of trichothecenes to human solid tumor cells in vitro. Arch Pharm Res 19(1):6–11. doi:10.1007/bf02976812

    Article  CAS  Google Scholar 

  • Chapagan BP, Wiesman Z, Tsror L (2007) In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind Crop Prod 26(2):109–115. doi:10.1016/j.indcrop.2007.02.005

    Article  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88(4):503–513. doi:10.1016/S0007-1536(87)80034-7

    Article  CAS  Google Scholar 

  • Collins RP, Halim AF (1972) Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem 20(2):437–438. doi:10.1021/jf60180a010

    Article  CAS  Google Scholar 

  • Cooney JM, Lauren DR (1998) Trichoderma/pathogen interactions: measurement of antagonistic chemicals produced at the antagonist/pathogen interface using a tubular bioassay. Lett Appl Microbiol 27(5):283–286

    Article  CAS  PubMed  Google Scholar 

  • Corley DG, Miller-Wideman M, Durley RC (1994) Isolation and structure of harzianum A: a new trichothecene from Trichoderma harzianum. J Nat Prod 57(3):422–425

    Article  CAS  PubMed  Google Scholar 

  • Covarelli L, Beccari G, Prodi A, Generotti S, Etruschi F, Juan C, Ferrer E, Manes J (2015) Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of Central Italy. J Sci Food Agric 95(3):540–551. doi:10.1002/jsfa.6772

    Article  CAS  PubMed  Google Scholar 

  • Cutler HG, Cox RH, Crumley FG, Cole PD (1986) 6-pentyl-α-pyrone from Trichoderma harzianum: its plant growth inhibitory and antimicrobial properties. Agric Biol Chem 50(11):2943–2945

    CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin A: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53(10):2605–2611

    CAS  Google Scholar 

  • Da Cruz CL, Fernández Pinto V, Patriarca A (2013) Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int J Food Microbiol 166(1):1–14. doi:10.1016/j.ijfoodmicro.2013.05.026

    Article  CAS  Google Scholar 

  • De Vrije T, Antoine N, Buitelaar RM, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones EE, Luth P, Oostra J, Ravensberg WJ, Renaud R, Rinzema A, Weber FJ, Whipps JM (2001) The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl Microbiol Biotechnol 56(1–2):58–68

    Article  PubMed  Google Scholar 

  • Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57(3):595–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pietro A, Lorito M, Hayes C, Broadway R, Harman G (1993) Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83(3):308–313

    Article  Google Scholar 

  • Doi K, Uetsuka K (2011) Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int J Mol Sci 12(8):5213–5237. doi:10.3390/ijms12085213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich KC, Daigle KW (1987) Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. Biochim Biophys Acta 923(2):206–213

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy S, Abul-Hajj YJ (1988) Microbial cleavage of zearalenone. Xenobiotica Fate Foreign Compounds Biol Syst 18(4):365–371. doi:10.3109/00498258809041672

    Article  CAS  Google Scholar 

  • Elmer WH, Summerell BA, Burgess LW, Nigh EL Jr (1999) Vegetative compatibility groups in Fusarium proliferatum from Asparagus in Australia. Mycologia 91(4):650–654. doi:10.2307/3761251

    Article  Google Scholar 

  • Fernandez M, Jefferson P (2004) Fungal populations in roots and crowns of common and durum wheat in Saskatchewan. Can J Plant Pathol 26(3):325–334

    Article  Google Scholar 

  • Fernandez MR, Basnyat P, Zentner RP (2007) Response of wheat root pathogens to crop management in Eastern Saskatchewan. Can J Plant Sci 87(4):953–963. doi:10.4141/CJPS07005

    Article  Google Scholar 

  • Franck B, Breipohl G (1984) Biosynthesis of moniliformin, a fungal toxin with cyclobutanedione structure. Angew Chem Int Ed Engl 23(12):996–998. doi:10.1002/anie.198409961

    Article  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26(1):75–91. doi:10.1146/annurev.py.26.090188.000451

    Article  CAS  Google Scholar 

  • Gaffoor I, Trail F (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol 72(3):1793–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo A, Mulè G, Favilla M, Altomare C (2004) Isolation and characterisation of a trichodiene synthase homologous gene in Trichoderma harzianum. Physiol Mol Plant Pathol 65(1):11–20

    Article  CAS  Google Scholar 

  • García-Martínez J, Ádám AL, Avalos J (2012) Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. PLoS One 7(1):e28849. doi:10.1371/journal.pone.0028849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardiner DM, Osborne S, Kazan K, Manners JM (2009) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology (Reading, England) 155(9):3149–3156

    Article  CAS  Google Scholar 

  • Gathercole PS, Thiel PG, Hofmeyr JH (1986) Inhibition of pyruvate dehydrogenase complex by moniliformin. Biochem J 233(3):719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelderblom WCA, Kriek NPJ, Marasas WFO, Thiel PG (1991) Toxicity and carcinogenicity of the Fusarium monitiforme metabolite, fumonisin B1, in rats. Carcinogenesis 12(7):1247–1251

    Article  CAS  PubMed  Google Scholar 

  • Gelderblom WCA, Snyman SD, Lebepe-Mazur S, van der Westhuizen L, Kriek NPJ, Marasas WFO (1996) The cancer-promoting potential of fumonisin B1 in rat liver using diethylnitrosamine as a cancer initiator. Cancer Lett 109(1–2):101–108. doi:10.1016/S0304-3835(96)04431-X

    Article  CAS  PubMed  Google Scholar 

  • Gerlagh M, Goossen-van de Geijn HM, Fokkema NJ, Vereijken PFG (1999) Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopathology 89(2):141–147. doi:10.1094/PHYTO.1999.89.2.141

    Article  CAS  PubMed  Google Scholar 

  • Glister G, Williams T (1944) Production of gliotoxin by Aspergillus fumigatus mut. Helvola Yuill. Nature 153:651

    Article  CAS  Google Scholar 

  • Gnanamanickam SS, Vasudevan P, Reddy MS, Defago G, Kloepper J (2002) Principles of biological control. Biological Control of Crop Diseases:1–9

  • Godtfredsen W, Vangedal S (1964) Trichodermin new antibiotic related to trichothecin. Proceedings of the Chemical Society, p 188–189

  • Goh YK, Vujanovic V (2010a) Ascospore germination patterns revealed ascomycetous biotrophic mycoparasite specificity to Fusarium hosts. Botany 88(12):1033–1043. doi:10.1139/b10-074

    Article  CAS  Google Scholar 

  • Goh YK, Vujanovic V (2010b) Biotrophic mycoparasitic interactions between Sphaerodes mycoparasitica and phytopathogenic Fusariums species. Biocontrol Sci Tech 20(9):891–902. doi:10.1080/09583157.2010.489147

    Article  Google Scholar 

  • Goh YK, Vujanovic V (2010c) Sphaerodes quadrangularis biotrophic mycoparasitism on Fusarium avenaceum. Mycologia 102(4):757–762. doi:10.3852/09-171

    Article  PubMed  Google Scholar 

  • Haggag WM, Mohamed HAA (2002) Enhancement of antifungal metabolite production from gamma-ray induced mutants of some Trichoderma species for control onion white rot disease. Plant Pathol Bull 11(1):45–56

    CAS  Google Scholar 

  • Harrison LR, Colvin BM, Greene JT, Newman LE, Cole JR (1990) Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Investig 2(3):217–221

    Article  CAS  Google Scholar 

  • Harveson RM, Kimbrough JW (2001) Parasitism and measurement of damage to Fusarium oxysporum by species of Melanospora, Sphaerodes, and Persiciospora. Mycologia 93(2):249–257

    Article  Google Scholar 

  • Harveson RM, Kimbrough JW, Hopkins DL (2002) Novel use of a Pyrenomycetous mycoparasite for management of Fusarium wilt of watermelon. Plant Dis 86(9):1025–1030. doi:10.1094/pdis.2002.86.9.1025

    Article  Google Scholar 

  • Hashioka Y, Nakai Y (1980) Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Trans Mycol Soc Jpn 21(3):329–338

    Google Scholar 

  • Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vágvölgyi C, Kredics L (2007) Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97(4):532–537. doi:10.1094/PHYTO-97-4-0532

    Article  CAS  PubMed  Google Scholar 

  • Howell C, Stipanovic R (1984) Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens. Phytopathology 74(11):1346–1349

    Article  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10. doi:10.1094/pdis.2003.87.1.4

    Article  Google Scholar 

  • Iqbal SZ, Asi MR, Jinap S, Rashid U (2014) Detection of aflatoxins and zearalenone contamination in wheat derived products. Food Control 35(1):223–226. doi:10.1016/j.foodcont.2013.06.048

    Article  CAS  Google Scholar 

  • Jagadeesan V, Rukmini C, Vijayaraghavan M, Tulpule PG (1982) Immune studies with T-2 toxin: effect of feeding and withdrawal in monkeys. Food Chem Toxicol 20(1):83–87. doi:10.1016/S0278-6915(82)80014-8

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P (1995) Biology and ecology of mycoparasitism. Can J Bot 73(S1):1284–1290. doi:10.1139/b95-389

    Article  Google Scholar 

  • Jensen B, Knudsen IB, Jensen D (2000) Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: biocontrol efficacy against Fusarium culmorum. Eur J Plant Pathol 106(3):233–242. doi:10.1023/A:1008794626600

    Article  Google Scholar 

  • Jensen B, Knudsen IM, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94(6):551–560

    Article  PubMed  Google Scholar 

  • Jestoi M (2008) Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: a review. Crit Rev Food Sci Nutr 48(1):21–49. doi:10.1080/10408390601062021

    Article  CAS  PubMed  Google Scholar 

  • Jurado M, Vázquez C, Marín S, Sanchis V, Teresa González-Jaén M (2006) PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Syst Appl Microbiol 29(8):681–689. doi:10.1016/j.syapm.2006.01.014

    Article  CAS  PubMed  Google Scholar 

  • Kabak B (2010) Prevention and management of mycotoxins in food and feed. In: Rai M, Varma A (eds) Mycotoxins in food. Feed and Bioweapons. Springer, Berlin Heidelberg, pp. 201–227

    Google Scholar 

  • Karlovsky P (2011) Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechnol 91(3):491–504. doi:10.1007/s00253-011-3401-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson M, Durling MB, Choi J, Kosawang C, Lackner G, Tzelepis GD, Nygren K, Dubey MK, Kamou N, Levasseur A, Zapparata A, Wang J, Amby DB, Jensen B, Sarrocco S, Panteris E, Lagopodi AL, Pöggeler S, Vannacci G, Collinge DB, Hoffmeister D, Henrissat B, Lee Y-H, Jensen DF (2015) Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biol Evol 7(2):465–480. doi:10.1093/gbe/evu292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katzenellenbogen BS, Katzenellenbogen JA, Mordecai D (1979) Zearalenones: characterization of the estrogenic potencies and receptor interactions of a series of fungal β-resorcylic acid lactones. Endocrinology 105(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Keinath A, Fravel D, Papavizas G (1991) Potential of Gliocladium roseum for biocontrol of Verticillium dahliae. Phytopathology 81(6):644–648

    Article  Google Scholar 

  • Kellerman TS, Marasas W, Thiel P, Gelderblom W, Cawood M, Coetzer J (1990) Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1. The Onderstepoort Journal of Veterinary Research 57(4):269–275

    CAS  PubMed  Google Scholar 

  • Kim K, Fravel D, Papavizas G (1988) Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathology 78:488–492

    Article  CAS  Google Scholar 

  • Kim KK-A, Fravel DR, Papavizas GC (1990) Glucose oxidase as the antifungal principle of talaron from Talaromyces flavus. Can J Microbiol 36(11):760–764. doi:10.1139/m90-131

    Article  CAS  PubMed  Google Scholar 

  • Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, Lee T, Yun SH, Lee YW (2005) Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 58(4):1102–1113

    Article  CAS  PubMed  Google Scholar 

  • Knudsen IMB, Hockenhull J, Jensen DF (1995) Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathol 44(3):467–477. doi:10.1111/j.1365-3059.1995.tb01669.x

    Article  Google Scholar 

  • Kokkonen M, Ojala L, Parikka P, Jestoi M (2010) Mycotoxin production of selected Fusarium species at different culture conditions. Int J Food Microbiol 143(1–2):17–25. doi:10.1016/j.ijfoodmicro.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  • Kordic B, Pribicevic S, Muntanola-Cvetkovic M, Nikolic P, Nikolic B (1992) Experimental study of the effects of known quantities of zearalenone on swine reproduction. J Environ Pathol Toxicol Oncol Off Organ Int Soc Environ Toxicol Cancer 11(2):53–55

    CAS  Google Scholar 

  • Kosawang C, Karlsson M, Vélëz H, Rasmussen PH, Collinge DB, Jensen B, Jensen DF (2014) Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Fungal Biol 118(4):364–373. doi:10.1016/j.funbio.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, Kocsube S, Nagy L, Komon-Zelazowska M, Manczinger L, Sajben E, Nagy A, Vagvolgyi C, Kubicek CP, Druzhinina IS, Hatvani L (2009) Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiol Lett 300(1):58–67. doi:10.1111/j.1574-6968.2009.01765.x

    Article  CAS  PubMed  Google Scholar 

  • Kriek NP, Marasas WF, Steyn PS, van Rensburg SJ, Steyn M (1977) Toxicity of a moniliformin-producing strain of Fusarium moniliforme var. subglutinans isolated from maize. Food Cosmetics Toxicol 15(6):579–587

    Article  CAS  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinol 138(3):863–870

    CAS  Google Scholar 

  • Kulik T, Buśko M, Pszczółkowska A, Perkowski J, Okorski A (2014) Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett Appl Microbiol 59(1):99–107. doi:10.1111/lam.12250

    Article  CAS  PubMed  Google Scholar 

  • Lee HB, Kim Y, Jin HZ, Lee JJ, Kim CJ, Park JY, Jung HS (2005) A new Hypocrea strain producing harzianum a cytotoxic to tumour cell lines. Lett Appl Microbiol 40(6):497–503. doi:10.1111/j.1472-765X.2005.01719.x

    Article  CAS  PubMed  Google Scholar 

  • Leslie JF, Logrieco A (2014) Mycotoxin reduction in grain chains. Wiley-Blackwell, Ames, Iowa, USA

    Book  Google Scholar 

  • Liu C, Xu W, Liu F, Jiang S (2007) Fumonisins production by Fusarium proliferatum strains isolated from asparagus crown. Mycopathologia 164(3):127–134. doi:10.1007/s11046-007-9017-8

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Peterbauer C, Hayes CK, Harman GE (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiol (Reading, England) 140(3):623–629. doi:10.1099/00221287-140-3-623

    Article  CAS  Google Scholar 

  • Lumsden R, Beily B (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman G, Kubicek C, Ondik K (eds) Trichoderma and Gliocladium: enzymes, biological control and commercial applications, vol 2. CRC Press, New York, pp. 185–204

    Google Scholar 

  • Lumsden R, Locke J, Adkins S, Walter J, Ridout C (1992) Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82(2):230–235

    Article  CAS  Google Scholar 

  • Lysøe E, Klemsdal SS, Bone KR, Frandsen RJN, Johansen T, Thrane U, Giese H (2006) The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Appl Environ Microbiol 72(6):3924–3932. doi:10.1128/aem.00963-05

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madi L, Katan T, Katan J, Henis Y (1997) Biological control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology 87(10):1054–1060. doi:10.1094/PHYTO.1997.87.10.1054

    Article  CAS  PubMed  Google Scholar 

  • Malir F, Ostry V, Pfohl-Leszkowicz A, Novotna E (2013) Ochratoxin A: developmental and reproductive toxicity—an overview. Birth Defects Res Part B: Dev Reprod Toxicol 98(6):493–502. doi:10.1002/bdrb.21091

    Article  CAS  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutierrez S (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78(14):4856–4868. doi:10.1128/aem.00385-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins ML, Martins HM (2002) Influence of water activity, temperature and incubation time on the simultaneous production of deoxynivalenol and zearalenone in corn (Zea mays) by Fusarium graminearum. Food Chem 79(3):315–318. doi:10.1016/S0308-8146(02)00147-4

    Article  Google Scholar 

  • McCormick SP (2013) Microbial detoxification of mycotoxins. J Chem Ecol 39(7):907–918. doi:10.1007/s10886-013-0321-0

    Article  CAS  PubMed  Google Scholar 

  • McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes: from simple to complex mycotoxins. Toxins 3(7):802–814. doi:10.3390/toxins3070802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaren D, Huang H, Rimmer SR (1996) Control of apothecial production oí Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Dis 80:1373–1378

    Article  Google Scholar 

  • McLaren DL, Huang HC, Kozub GC, Rimmer SR (1994) Biological control of Sclerotinia wilt of sunflower with Talaromyces flavus and Coniothyrium minitans. Plant Dis 78(3):231–235

    Article  Google Scholar 

  • McNeil J, Cotnoir PA, Leroux T, Laprade R, Schwartz JL (2010) A Canadian national survey on the public perception of biological control. BioControl 55(4):445–454. doi:10.1007/s10526-010-9273-2

    Article  Google Scholar 

  • Menzies JG (1993) A strain of Trichoderma viride pathogenic to germinating seedlings of cucumber, pepper and tomato. Plant Pathol 42(5):784–791. doi:10.1111/j.1365-3059.1993.tb01565.x

    Article  Google Scholar 

  • Merrill AH Jr, Sullards MC, Wang E, Voss KA, Riley RT (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109(Suppl 2):283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middlebrook JL, Leatherman DL (1989) Binding of T-2 toxin to eukaryotic cell ribosomes. Biochem Pharmacol 38(18):3103–3110

    Article  CAS  PubMed  Google Scholar 

  • Miyake T, Kato A, Tateishi H, Teraoka T, Arie T (2012) Mode of action of Talaromyces sp KNB422, a biocontrol agent against rice seedling diseases. J Pestic Sci 37(1):56–61. doi:10.1584/jpestics.D11-002

    Article  Google Scholar 

  • Mullbacher A, Waring P, Eichner RD (1985) Identification of an agent in cultures of Aspergillus fumigatus displaying anti-phagocytic and immunomodulating activity in vitro. J Gen Microbiol 131(5):1251–1258

    CAS  PubMed  Google Scholar 

  • Murray F, Llewellyn D, McFadden H, Last D, Dennis E, Peacock WJ (1999) Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol Breed 5(3):219–232. doi:10.1023/A:1009625801909

    Article  CAS  Google Scholar 

  • Murray FR, Llewellyn DJ, Peacock WJ, Dennis ES (1997) Isolation of the glucose oxidase gene from Talaromyces flavus and characterisation of its role in the biocontrol of Verticillium dahliae. Curr Genet 32(5):367–375. doi:10.1007/s002940050290

    Article  CAS  PubMed  Google Scholar 

  • Nicol RW, Traquair JA, Bernards MA (2002) Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Canadian J Bot 80:557–562. doi:10.1139/B02-034

    Article  CAS  Google Scholar 

  • Nobre SAM, Maffia LA, Mizubuti ESG, Cota LV, Dias APS (2005) Selection of Clonostachys rosea isolates from Brazilian ecosystems effective in controlling Botrytis cinerea. Biol Control 34(2):132–143. doi:10.1016/j.biocontrol.2005.04.011

    Article  Google Scholar 

  • Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119(1–2):103–108. doi:10.1016/j.ijfoodmicro.2007.07.032

    Article  PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor 2:1117–1142

    Google Scholar 

  • Papavizas G (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23(1):23–54

    Article  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol 44(2):207–238. doi:10.1111/j.1365-3059.1995.tb02773.x

    Article  Google Scholar 

  • Paterson RRM, Lima N (2010) How will climate change affect mycotoxins in food? Food Res Int 43(7):1902–1914. doi:10.1016/j.foodres.2009.07.010

    Article  CAS  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39(1):103–133. doi:10.1146/annurev.phyto.39.1.103

    Article  CAS  PubMed  Google Scholar 

  • Pertot I, Zasso R, Amsalem L, Baldessari M, Angeli G, Elad Y (2004) Use of biocontrol agents against powdery mildew in integrated strategies for reducing pesticide residues on strawberry: evaluation of efficacy and side effects. IOBC WORS Bulletin 27(8):109–113

    Google Scholar 

  • Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health, Part B 8(1):39–69. doi:10.1080/10937400590889458

    Article  CAS  Google Scholar 

  • Ponts N, Pinson-Gadais L, Boutigny A-L, Barreau C, Richard-Forget F (2011) Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathology 101(8):929–934. doi:10.1094/PHYTO-09-10-0230

    Article  CAS  PubMed  Google Scholar 

  • Reino J, Guerrero R, Hernández-Galán R, Collado I (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7(1):89–123. doi:10.1007/s11101-006-9032-2

    Article  CAS  Google Scholar 

  • Riley RT, Enongene E, Voss KA, Norred WP, Meredith FI, Sharma RP, Spitsbergen J, Williams DE, Carlson DB, Merrill AH Jr (2001) Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ Health Perspect 109:301–308. doi:10.2307/3435022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez MA, Cabrera G, Gozzo FC, Eberlin MN, Godeas A (2011) Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent. J Appl Microbiol 110(5):1177–1186. doi:10.1111/j.1365-2672.2011.04970.x

    Article  PubMed  Google Scholar 

  • Roush WR, Russo-Rodriguez S (1987) Trichothecene degradation studies. 3. Synthesis of 12,13-deoxy-12,13-methanoanguidine and 12-epianguidine, two optically active analogs of the epoxytrichothecene mycotoxin anguidine. J Organic Chem 52(4):603–606. doi:10.1021/jo00380a022

    Article  CAS  Google Scholar 

  • Rousseau A, Benhamou N, Chet I, Piché Y (1996) Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86(5):434–443

    Article  Google Scholar 

  • Samapundo S, Devlieghere F, De Meulenaer B, Geeraerd AH, Van Impe JF, Debevere JM (2005) Predictive modelling of the individual and combined effect of water activity and temperature on the radial growth of Fusarium verticilliodes and F. proliferatum on corn. Int J Food Microbiol 105(1):35–52. doi:10.1016/j.ijfoodmicro.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94(1):146–170

    Article  PubMed  Google Scholar 

  • Sandmeyer LS, Vujanovic V, Petrie L, Campbell JR, Bauer BS, Allen AL, Grahn BH (2015) Optic neuropathy in a herd of beef cattle in Alberta associated with consumption of moldy corn. Canadian Vet J 56(3):249–256

    Google Scholar 

  • Schmidt-Heydt M, Parra R, Geisen R, Magan N (2011) Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species. J Royal Soc Interface Royal Soc 8(54):117–126. doi:10.1098/rsif.2010.0131

    Article  CAS  Google Scholar 

  • Schütt F, Nirenberg H, Demi G (1998) Moniliformin production in the genus Fusarium. Mycotoxin Res 14(1):35–40. doi:10.1007/BF02945091

    Article  PubMed  Google Scholar 

  • Sewram V, Mshicileli N, Shephard GS, Vismer HF, Rheeder JP, Lee YW, Leslie JF, Marasas WF (2005) Production of fumonisin B and C analogues by several Fusarium species. J Agric Food Chem 53(12):4861–4866. doi:10.1021/jf050307n

    Article  CAS  PubMed  Google Scholar 

  • Shier WT, Shier AC, Xie W, Mirocha CJ (2001) Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon 39(9):1435–1438. doi:10.1016/S0041-0101(00)00259-2

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Dureja P, Tanwar R, Singh A (2005) Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17(2):26–29

    CAS  Google Scholar 

  • Slifkin MK (1961) Parasitism of Olpidiopsis incrassata on members of the Saprolegniaceae. I. Host range and effects of light, temperature, and stage of host on infectivity. Mycologia 53(2):183–193. doi:10.2307/3756236

    Article  Google Scholar 

  • Soriano JM, González L, Catalá AI (2005) Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Prog Lipid Res 44(6):345–356. doi:10.1016/j.plipres.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  • Sundheim L (1982) Control of cucumber powdery mildew by the hyperparasite Ampelomyces quisqualis and fungicides. Plant Pathol 31(3):209–214. doi:10.1111/j.1365-3059.1982.tb01270.x

    Article  Google Scholar 

  • Sundheim L, Krekling T (1982) Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. J Phytopathol 104(3):202–210

    Article  Google Scholar 

  • Takahashi-Ando N, Kimura M, Kakeya H, Osada H, Yamaguchi I (2002) A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning. Biochem J 365(Pt 1):1–6. doi:10.1042/bj20020450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tijerino A, Hermosa R, Cardoza RE, Moraga J, Malmierca MG, Aleu J, Collado IG, Monte E, Gutierrez S (2011) Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins 3(9):1220–1232. doi:10.3390/toxins3091220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsitsigiannis DI, Dimakopoulou M, Antoniou PP, Tjamos EC (2012) Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathologia Mediterranea. doi:10.14601/Phytopathol_Mediterr-9497

    Google Scholar 

  • Ueno Y, Nakajima M, Sakai K, Ishii K, Sato N, Shimada N (1973) Comparative toxicology of Trichothec mycotoxins: inhibition of protein synthesis in animal cells. J Biochem 74(2):285–296

    CAS  PubMed  Google Scholar 

  • Vargas WA, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM (2014) Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology (Reading, England) 160(10):2319–2330. doi:10.1099/mic.0.079210-0

    Article  CAS  Google Scholar 

  • Voss KA, Smith GW, Haschek WM (2007) Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Technol 137(3–4):299–325. doi:10.1016/j.anifeedsci.2007.06.007

    Article  CAS  Google Scholar 

  • Vujanovic V, Chau HW (2012) Monitoring Fusarium complex mycelia replacement by mycopathogenic Sphaerodes using alcohol percentage test, qRT-PCR and HPLC. Physiol Mol Plant Pathol 80:28–34. doi:10.1016/j.pmpp.2012.07.004

    Article  CAS  Google Scholar 

  • Vujanovic V, Goh YK (2009) Sphaerodes mycoparasitica sp. nov., a new biotrophic mycoparasite on Fusarium avenaceum, F. graminearum and F. oxysporum. Mycol Res 113:1172–1180. doi:10.1016/j.mycres.2009.07.018

    Article  PubMed  Google Scholar 

  • Vujanovic V, Goh YK (2010) Sphaerodes mycoparasites and new Fusarium hosts for S. mycoparasitica. Mycotaxon 114(1):179–191

    Article  Google Scholar 

  • Vujanovic V, Goh YK (2011a) Mycoparasites of Fusarium pathogens on wheat: from taxonomy, genomics and proteomics to biotechnology. In: Wheat: genetics, crops and food production. Agriculture issues and policies. Nova Science Publishers, Hauppauge, NY, USA, pp. 297–314

    Google Scholar 

  • Vujanovic V, Goh YK (2011b) Sphaerodes mycoparasitica biotrophic mycoparasite of 3-acetyldeoxynivalenol- and 15-acetyldeoxynivalenol-producing toxigenic Fusarium graminearum chemotypes. FEMS Microbiol Lett 316(2):136–143. doi:10.1111/j.1574-6968.2010.02201.x

    Article  CAS  PubMed  Google Scholar 

  • Vujanovic V, Goh YK (2012) qPCR quantification of Sphaerodes mycoparasitica biotrophic mycoparasite interaction with Fusarium graminearum: in vitro and in planta assays. Arch Microbiol. doi:10.1007/s00203-012-0807-0

    PubMed  Google Scholar 

  • Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24(1):153–151

    Google Scholar 

  • Westerberg UB, Bolcsfoldi G, Eliasson E (1976) Control of transfer RNA synthesis in the presence of inhibitors of protein synthesis. Biochim Biophys Acta 447(2):203–213

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM, Gerlagh M (1992) Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res 96(11):897–907. doi:10.1016/S0953-7562(09)80588-1

    Article  Google Scholar 

  • Wilcoxson R, Kommedahl T, Ozmon E, Windels C (1988) Occurrence of Fusarium species in scabby wheat from Minnesota and their pathogenicity to wheat. Phytopathology 78(5):586–589

    Article  Google Scholar 

  • Wright JM (1952) Production of gliotoxin in unsterilized soil. Nature 170(4329):673–674

    Article  CAS  Google Scholar 

  • Xue AG (2003) Biological control of pathogens causing root rot complex in Field pea using Clonostachys rosea strain ACM941. Phytopathology 93(3):329–335. doi:10.1094/PHYTO.2003.93.3.329

    Article  PubMed  Google Scholar 

  • Yazar S, Omurtag GZ (2008) Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 9(11):2062–2090. doi:10.3390/ijms9112062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Natural Sciences and Engineering Research Council of Canada–Discovery Grant to Dr. V. Vujanovic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Vujanovic.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Vujanovic, V. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production. Appl Microbiol Biotechnol 100, 5257–5272 (2016). https://doi.org/10.1007/s00253-016-7539-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7539-z

Keywords

Navigation